

Préing 1 **Devoir Surveillé 1 Analyse II**

L'usage de tout appareil électronique est interdit

Date: Jeudi 10 Mars 2022

Durée: 1h30

Nombre de pages: 2

Il sera tenu compte de la qualité de la rédaction et de la précision des justifications.

Le sujet comporte 6 exercices. L'ordre dans lequel ceux-ci sont traités n'est pas imposé.

 $\Diamond \Diamond \Diamond$

Exercice 1 (2 points)

Déterminer l'expression de la dérivée de chacune des fonctions suivantes sur l'ensemble proposé.

1. Sur
$$\mathbb{R}$$
, $f_1: x \mapsto \cos^2(4x)$.

2. Sur
$$\mathbb{R}^{+*}$$
, $f_2: x \mapsto \sqrt{\sqrt{2x} + 5}$.

3. Sur
$$\mathbb{R}$$
, $f_3: x \mapsto \ln(x + \sqrt{x^2 + 1})$.

Solution

1)
$$f_1(x) = -8\cos(4x)\sin(4x)$$

2)
$$f_2'(x) = \frac{1}{2\sqrt{\sqrt{2x} + 5}} \frac{1}{2\sqrt{2x}} 2 = \frac{1}{\sqrt{\sqrt{2x} + 5}} \frac{1}{2\sqrt{2x}}$$

3)
$$f_3'(x) = \frac{-8\cos(4x)\sin(4x)}{2\sqrt{\sqrt{2x}+5}}$$

 $f_2'(x) = \frac{1}{2\sqrt{\sqrt{2x}+5}} \frac{1}{2\sqrt{2x}} = \frac{1}{2\sqrt{2x}} = \frac{1}{2\sqrt{2x}} = \frac{1}{2\sqrt{2x}}$
3) $f_3'(x) = \frac{1 + \frac{2x}{2\sqrt{x^2+1}}}{x + \sqrt{x^2+1}} = \frac{\sqrt{x^2+1}+x}{\left(x + \sqrt{x^2+1}\right)\sqrt{x^2+1}} = \frac{1}{\sqrt{x^2+1}}$

Exercice 2 (3 points)

Soit la fonction $g: x \mapsto x^3 e^{-x}$.

Déterminer, $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}$, l'expression de la dérivée $g^{(n)}(x)$ (dérivée n-ième de g).

Solution

On utilise la formule de Leibniz:
$$g^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} (x^3)^{(k)} (e^{-x})^{(n-k)}$$

$$= \binom{n}{0} (x^3) (e^{-x})^{(n)} + \binom{n}{1} (x^3)^{(1)} (e^{-x})^{(n-1)} + \binom{n}{2} (x^3)^{(2)} (e^{-x})^{(n-2)} + \binom{n}{3} (x^3)^{(3)} (e^{-x})^{(n-3)}$$

$$= x^3 e^{-x} (-1)^n + n3x^2 e^{-x} (-1)^{n-1} + \frac{n(n-1)}{2} 6x e^{-x} (-1)^{n-2} + \frac{n(n-1)(n-2)}{6} 6e^{-x} (-1)^{n-3}$$

$$= e^{-x} (-1)^n (x^3 - 3nx^2 + 3xn(n-1) - n(n-1)(n-2))$$

Exercice 3 (3 points)

- 1. Déterminer la limite en 1 de $\frac{\ln(1+\sin(x-1))}{x-1}$.
- 2. Déterminer la limite en 0 de $\left(\frac{1}{r^2+1}-\cos x\right)\frac{1}{r^2}$

Solution

1) $\lim_{x \to 1} \frac{\ln(1 + \sin(x - 1))}{x - 1} = \lim_{x \to 1} \frac{\cos(x - 1)}{1 + \sin(x - 1)} = 1$ en appliquant la règle de l'Hospital. 2)On applique deux fois la règle de l'Hospital.

$$\lim_{x \to 0} \left(\frac{1}{x^2 + 1} - \cos x \right) \frac{1}{x^2} = \lim_{x \to 0} \left(-\frac{2x}{\left(x^2 + 1\right)^2} + \sin x \right) \frac{1}{2x}$$
$$= \lim_{x \to 0} \left(-\frac{1}{\left(x^2 + 1\right)^2} + \frac{\sin x}{2x} \right) = -1 + \frac{1}{2} = -\frac{1}{2}$$

Exercice 4 (6 points)

Soit la fonction f définie par $f(x) = \frac{1}{1 + \rho^{-x}}$

- 1. Démontrer que f est définie et dérivable sur \mathbb{R}
- 2. Démontrer que f' = f(1-f) en déduire f'' = f(1-f)(1-2f)
- 3. Déterminer une équation de la tangente au point d'abscisse x = 0 de la courbe représentative de f.
- 4. Démontrer que f est strictement croissante sur \mathbb{R} .
- (a) Démontrer que f est bijective de \mathbb{R} dans un ensemble que l'on précisera.
 - (b) En utilisant un théorème du cours, démontrer que f^{-1} est dérivable et déterminer sa dérivée.
 - (c) Déterminer une expression de $f^{-1}(x)$.
 - (d) (bonus) Déduire de la question précédente un nouveau calcul de la dérivée et comparer avec le résultat de la question b)

Solution

1) Le dénominateur de ce quotient ne s'annule pas et c'est une fonction continue et dérivable sur \mathbb{R} . Donc f est continue et dérivable sur \mathbb{R} .

2)
$$f'(x) = \frac{e^{-x}}{(1 + e^{-x})^2}$$
 or $1 - f(x) = \frac{1 + e^{-x}}{1 + e^{-x}} - \frac{1}{1 + e^{-x}} = \frac{e^{-x}}{1 + e^{-x}}$

On dérive cette expression:
$$f'' = f'(1-f) - ff' = f'(1-2f) = f(1-f)(1-2f)$$

3) $y = f'(0)(x-0) + f(0) \Leftrightarrow y = f(0)(1-f(0))x + f(0) \Leftrightarrow y = \frac{1}{4}x + \frac{1}{2}$

4)
$$f'(x) = \frac{e^{-x}}{(1 + e^{-x})^2} > 0$$
 donc f est strictement croissante.

5) a) f est continue sur \mathbb{R} et strictement croissante donc elle est bijective sur $f(\mathbb{R})$.

or
$$\lim_{x \to -\infty} f(x) = 0$$
 car $\lim_{x \to -\infty} e^x = 0$ et $f(x) = \frac{1}{1 + \frac{1}{e^x}}$

et
$$\lim_{x \to +\infty} f(x) = 1$$
 car $\lim_{x \to +\infty} e^x = +\infty$

Donc $f(\mathbb{R}) =]0;1[$

Donc
$$f(\mathbb{R}) =]0; 1[$$

b) On a vu que $f'(x) \neq 0$ donc f^{-1} est dérivable et $f'^{-1}(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{f(f^{-1}(x))(1-f(f^{-1}(x)))} = \frac{1}{x(1-x)}$
c) On résout

$$y = f(x) \Leftrightarrow y = \frac{1}{1 + e^{-x}} \Leftrightarrow 1 + e^{-x} = \frac{1}{y} \Leftrightarrow e^{-x} = \frac{1 - y}{y}$$
$$\Leftrightarrow x = -\ln\left(\frac{1 - y}{y}\right) \Leftrightarrow x = \ln\frac{y}{1 - y}$$
$$f^{-1}(x) = \ln\frac{x}{1 - x}$$

d) Si on dérive en
$$y$$
, on obtient $\frac{1}{y} + \frac{1}{1-y} = \frac{1}{y(1-y)}$

Exercice 5 (6 points)

Soit la fonction f définie par

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} ax^2 + bx + c & \text{si } x \le 0 \\ e^{-\frac{1}{x}} & \text{si } x > 0 \end{cases}$$

- 1. Déterminer la limite de f en $+\infty$.
- 2. Déterminer les conditions pour a, b et c pour que f soit continue sur \mathbb{R} .
- 3. Etudier la dérivabilité de f en 0 à droite en utilisant le taux de variation.
- 4. Etudier la dérivabilité de f sur \mathbb{R}^{+*} et calculer f'(x).
- 5. En déduire les conditions sur a, b et c pour que f soit dérivable sur \mathbb{R} .
- 6. Dans les conditions de la question précédente, la fonction f est-elle de classe C^1 , de classe C^2 sur \mathbb{R} ?
- 7. (Bonus) La fonction f est-elle C^{∞} ?

Solution

1)
$$\lim_{x \to +\infty} \frac{1}{x} = 0$$
 et $\lim_{x \to 0} e^x = e^0 = 1$ car la fonction exponentielle est continue donc $\lim_{x \to +\infty} e^{\frac{1}{x}} = 1$

2)
$$f(0) = c$$
 et f est continue à gauche. De plus $\lim_{x \to 0^+} -\frac{1}{x} = -\infty$ et $\lim_{x \to -\infty} e^x = 0$ car la fonction exponentielle

est continue donc $\lim_{x\to 0^+} e^{-\frac{1}{x}} = 0$.

La fonction f est continue en 0 si et seulement si $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x) \Leftrightarrow c = 0$ Sur \mathbb{R}_+^* , f est continue comme composée de fonction continue et sur \mathbb{R}_- , f est continue comme fonction polynôme. Donc f est continue sur \mathbb{R} si et seulement si c=0

3) On déterminer le taux de variation entre 0 et x:

 $T(x) = \frac{f(x) - f(0)}{x} = \frac{e^{-\frac{1}{x}}}{x} = -\left(-\frac{1}{x}e^{-\frac{1}{x}}\right) \text{ or } \lim_{x \to 0^+} -\frac{1}{x} = 0 \text{ et } \lim_{x \to -\infty} xe^x = 0 \text{ donc } \lim_{x \to 0^+} \frac{1}{x}e^{-\frac{1}{x}} = 0. \text{ Donc le taux de variation admet une limite finie, donc } f \text{ est dérivable en 0 à droite.}$

- 4) Sur \mathbb{R}_+^* , f est dérivable comme composée de fonction dérivables et $f'(x) = \frac{1}{x^2} e^{-\frac{1}{x}}$
- 5) f est dérivable sur \mathbb{R}_- avec f'(x) = 2ax + b donc la dérivée à gauche de f est $f_d'(0) = b$

Donc f est dérivable en 0 si et seulement si $f_d^{'}(0) = f_g^{'}(0) \Leftrightarrow b = 0$

donc f est dérivable sur \mathbb{R} si et seulement si b = c = 0

6) La fonction f est dérivable sur \mathbb{R} , de plus sa dérivée est continue sur \mathbb{R}^*

Elle est continue en 0 car $\lim_{x\to 0^-} 2ax + b = 0 = f'(0) = \lim_{x\to 0^-} \frac{1}{x^2} e^{-\frac{1}{x}}$

Donc f est C^1

La fonction f' est dérivable sur

Exercice 6 (4 points)

1. Montrer en utilisant le théorème des accroissements finis que pour tout réel x > 1

$$(2x-1)e^{\frac{1}{x}} \leq (x+1)^2 e^{\frac{1}{x+1}} - x^2 e^{\frac{1}{x}} \leq (2x+1)e^{\frac{1}{x+1}}$$

2. En déduire la limite en $+\infty$ de

$$\frac{(x+1)^2 e^{\frac{1}{x+1}} - x^2 e^{\frac{1}{x}}}{x}$$

Soit $g: x \mapsto x^2 e^{\frac{1}{x}}$ g est dérivable de dérivée: $g'(x) = e^{\frac{1}{x}} \left(2x - x^2 \frac{1}{x^2} \right) = e^{\frac{1}{x}} (2x - 1)$

$$g(x+1) - g(x) = e^{\frac{1}{c}}(2c-1)$$

g' est dérivable de dérivée: $g''(x) = e^{\frac{1}{x}} \left(2 - (2x - 1) \frac{1}{x^2} \right) = e^{\frac{1}{x}} \left(\frac{2x^2 - 2x + 1}{x^2} \right)$

Cette fonction est croissante pour x > 1

On souhaite appliquer le théorème des accroisssements finis à l'intervalle [x; x+1]on a *g* continue et dérivable sur [x; x+1] donc il existe $c \in]x; x+1[$ tel que

$$g(x+1) - g(x) = (x+1-x)g'(c) = g'(c)$$

on a donc
$$g'(x) \le g(x+1) - g(x) \le g'(x+1)$$

donc
$$e^{\frac{1}{x}}(2x-1) \le g(x+1) - g(x) \le e^{\frac{1}{x+1}}(2x+1)$$

donc
$$e^{\frac{1}{x}}(2x-1) \le (x+1)^2 e^{\frac{1}{x+1}} - x^2 e^{\frac{1}{x}} \le e^{\frac{1}{x+1}}(2x+1)$$

En divisant par x, on obtient:

$$e^{\frac{1}{x}} \frac{2x-1}{x} \le \frac{(x+1)^2 e^{\frac{1}{x+1}} - x^2 e^{\frac{1}{x}}}{x} \le e^{\frac{1}{x+1}} \frac{2x+1}{x}$$

Or
$$\lim_{x \to +\infty} \frac{2x-1}{x} = \lim_{x \to +\infty} \frac{2x+1}{x} = 2$$
 et $\lim_{x \to +\infty} \frac{1}{x} = 0$ et $\lim_{x \to 0} e^x = e^0 = 1$ car la fonction exponentielle est

continue donc
$$\lim_{x \to +\infty} e^{\frac{1}{x}} = 1$$

Donc, par le théorème des gendarmes,
$$\lim_{x \to +\infty} \frac{(x+1)^2 e^{\frac{1}{x+1}} - x^2 e^{\frac{1}{x}}}{x} = 2$$