

Correction DS1 Analyse - 18 novembre 2021

Exercice 1 : Résoudre, dans \mathbb{R} , les équations suivantes :

1. $\sin(3x) = \cos(x)$. (1 point)

Solution: Nous avons

$$\sin(3x) = \cos(x) \iff \sin(3x) = \sin\left(x + \frac{\pi}{2}\right)$$

$$\iff 3x \equiv x + \frac{\pi}{2} [2\pi] \text{ ou } 3x \equiv \pi - x - \frac{\pi}{2} [2\pi]$$

$$\iff 2x \equiv \frac{\pi}{2} [2\pi] \text{ ou } 4x \equiv \frac{\pi}{2} [2\pi]$$

$$\iff 2x = \frac{\pi}{2} + 2k\pi, \ k \in \mathbb{Z} \text{ ou } 4x = \frac{\pi}{2} + 2k\pi, \ k \in \mathbb{Z}$$

$$\iff x = \frac{\pi}{4} + k\pi, \ k \in \mathbb{Z} \text{ ou } x = \frac{\pi}{8} + \frac{k\pi}{2}, \ k \in \mathbb{Z}$$

Ainsi, l'ensemble solution de l'équation $\sin(3x) = \cos(x)$, est donné par

$$\left\{ \frac{\pi}{4} + k\pi, \ \frac{\pi}{8} + \frac{k\pi}{2} \ : \ k \in \mathbb{Z} \right\} = \left\{ \frac{\pi}{4} + k\pi, \ \frac{\pi}{8} + k\pi, \ \frac{5\pi}{8} + k\pi : \ k \in \mathbb{Z} \right\}.$$

2. $\tan^2\left(3x + \frac{\pi}{3}\right) - 3 = 0$. (1,5 point)

Solution : Pour tout $x \in \mathbb{R}$ tel que $3x + \frac{\pi}{3} \neq \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$ (i.e. $x \neq \frac{\pi}{18} + \frac{k\pi}{3}$), nous avons

$$\tan^{2}\left(3x + \frac{\pi}{3}\right) - 3 = 0 \iff \tan^{2}\left(3x + \frac{\pi}{3}\right) = 3$$

$$\iff \tan\left(3x + \frac{\pi}{3}\right) = \pm \tan\left(\frac{\pi}{3}\right)$$

$$\iff \tan\left(3x + \frac{\pi}{3}\right) = \tan\left(\frac{\pi}{3}\right) \text{ ou } \tan\left(3x + \frac{\pi}{3}\right) = \tan\left(-\frac{\pi}{3}\right)$$

$$\iff 3x + \frac{\pi}{3} = \frac{\pi}{3} \left[\pi\right] \text{ ou } 3x + \frac{\pi}{3} = -\frac{\pi}{3} \left[\pi\right]$$

$$\iff 3x = 0 \left[\pi\right] \text{ ou } 3x = -\frac{2\pi}{3} \left[\pi\right]$$

$$\iff 3x = k\pi, \ k \in \mathbb{Z} \text{ ou } 3x = -\frac{2\pi}{3} + k\pi, \ k \in \mathbb{Z}$$

$$\iff x = \frac{k\pi}{3}, \ k \in \mathbb{Z} \text{ ou } x = -\frac{2\pi}{9} + \frac{k\pi}{3}, \ k \in \mathbb{Z}$$

Ainsi, l'ensemble solution de l'équation $\tan^2\left(3x+\frac{\pi}{3}\right)-3=0$, est donné par

$$\left\{ \frac{k\pi}{3}, -\frac{2\pi}{9} + \frac{k\pi}{3} : k \in \mathbb{Z} \right\}
= \left\{ k\pi, \frac{\pi}{3} + k\pi, \frac{2\pi}{3} + k\pi, -\frac{2\pi}{9} + k\pi, \frac{\pi}{9} + k\pi, \frac{4\pi}{9} + k\pi : k \in \mathbb{Z} \right\}.$$

3.
$$(5E(x) + 2) \cdot (3E(x) + 6) = 0$$
. (1,5 point)

Solution: Nous avons

$$(5E(x) + 2) \cdot (3E(x) + 6) = 0 \iff E(x) = -\frac{2}{5} \text{ ou } E(x) = -\frac{6}{3} = -2.$$

Or pour tout $x \in \mathbb{R}$, E(x) est un entier. Donc l'equation $E(x) = -\frac{2}{5}$ n'a pas de solution. Ainsi

$$(5E(x) + 2) \cdot (3E(x) + 6) = 0 \iff E(x) = -2 \iff x \in [-2, -1].$$

Exercice 2 : Résoudre, dans \mathbb{R} , les inéquations suivantes :

1.
$$\left| \frac{1}{x} + 1 \right| < 1$$
. (1 point)

Solution : Il faut que $x \neq 0$: Cette inéquation est équivalente à $-1 < \frac{1}{x} + 1 < 1$

- Si x > 0, on obtient -x < 1 + x < x ce qui impossible.
- Si x < 0, on obtient x < 1 + x < -x ce qui implique que $x < -\frac{1}{2}$.

Donc, $S_1 =]-\infty; -\frac{1}{2}[.$

2.
$$(2E(x) + 1)^2 < 4$$
. (1,5 point)

Solution : On cherche à résoudre $(2E(x)+1)^2 < 4$ ce qui est équivalent à $|2E(x)+1| < 2 \Leftrightarrow -2 < 2E(x)+1 < 2$. On obtient

$$-\frac{3}{2} < E(x) < \frac{1}{2} \quad \Leftrightarrow \quad -1 \le E(x) \le 0 \quad \Leftrightarrow \quad -1 < x < 1.$$

Donc, $S_2 =]-1;1[.$

3.
$$\sqrt{x^2-1} < 2-x$$
. (1,5 point)

Solution : On cherche à résoudre $\sqrt{x^2 - 1} < 2 - x$. Tout d'abord, cette inéquation est définie si $x^2 - 1 \ge 0$ et 0 < 2 - x, ce qui équivalent à

$$x\in]-\infty;-1]\cup [1;2[.$$

Dans ce cas, en passant au carré de deux côtés, on obtient

$$x^2 - 1 < 4 - 4x + x^2 \quad \Leftrightarrow \quad 4x < 5 \quad \Leftrightarrow x < \frac{5}{4}.$$

Donc, $S_3 =]-\infty; -1] \cup [1; \frac{5}{4}[.$

Exercice 3 : Calculer les sommes et les produits suivants :

1.
$$\sum_{k=0}^{n} \frac{k}{(k+1)!}$$
. (1,5 point)

Solution: Nous avons

$$\sum_{k=0}^{n} \frac{k}{(k+1)!} = \sum_{k=0}^{n} \frac{(k+1)-1}{(k+1)!}$$

$$= \sum_{k=0}^{n} \frac{k+1}{(k+1)!} - \frac{1}{(k+1)!}$$

$$= \sum_{k=0}^{n} \frac{1}{k!} - \frac{1}{(k+1)!}$$

$$= \frac{1}{0!} - \frac{1}{(n+1)!} = 1 - \frac{1}{(n+1)!}.$$

2.
$$\sum_{k=0}^{n} \frac{(-1)^k}{3^{k+1}} \binom{n}{k}$$
. (1,5 point)

Solution: Nous avons

$$\sum_{k=0}^{n} \frac{(-1)^k}{3^{k+1}} \binom{n}{k} = \frac{1}{3} \sum_{k=0}^{n} \binom{n}{k} \left(-\frac{1}{3}\right)^k$$

$$= \frac{1}{3} \sum_{k=0}^{n} \binom{n}{k} 1^{n-k} \left(-\frac{1}{3}\right)^k$$

$$= \frac{\left(1 - \frac{1}{3}\right)^n}{3}$$

$$= \frac{\left(\frac{2}{3}\right)^n}{3}.$$

3.
$$\prod_{k=0}^{n} (-5) \cdot e^k$$
. (1 point)

Solution: Nous avons

$$\prod_{k=0}^{n} (-5) \cdot e^{k} = \prod_{k=0}^{n} (-5) \cdot \prod_{k=0}^{n} e^{k}$$
$$= (-5)^{n+1} e^{\sum_{k=0}^{n} k}$$
$$= (-5)^{n+1} e^{\frac{n(n+1)}{2}}.$$

Exercice 4: On considère les ensembles A et B suivants

$$A = \left\{ x \in \mathbb{R} : x^2 - 2 \ge 0 \text{ et } |x - 1| < 3 \right\} \quad ; \quad B = \left\{ (-1)^n + \frac{1}{n} : n \in \mathbb{N}^* \right\}.$$

1. Les ensembles A et B sont-ils majorés, minorés? Justifier votre réponse.

Solution: (1 point) Commençons par étudier l'ensemble A. Nous avons

$$x \in A \iff x^2 - 2 \ge 0 \text{ et } |x - 1| < 3 \iff x^2 \ge 2 \text{ et } -3 < x - 1 < 3$$

$$\iff \left(x \le -\sqrt{2} \text{ ou } x \ge \sqrt{2}\right) \text{ et } -2 < x < 4$$

$$\iff x \in \left(] - \infty, -\sqrt{2}\right] \ \cup \ \left[\sqrt{2}, \infty\right] \cap \left] -2, 4\right[$$

$$\iff x \in \left] -2, -\sqrt{2}\right] \ \cup \ \left[\sqrt{2}, 4\right[.$$

Ainsi

$$A =]-2, -\sqrt{2}] \cup [\sqrt{2}, 4[.$$

Par conséquent, A est majorée par tout réel supérieur ou égal à 4, et A est minorée par tout réel inférieur ou égal à -2.

(1 point) Étudions maintenant l'ensemble B. On commence par noter que

• si $n \neq 0$ est pair, nous avons

$$(-1)^n = 1$$
 et $0 < \frac{1}{n} \le \frac{1}{2}$ \Longrightarrow $1 < (-1)^n + \frac{1}{n} \le 1 + \frac{1}{2} = \frac{3}{2}$.

• si $n \neq 0$ est impair, nous avons

$$(-1)^n = -1$$
 et $0 < \frac{1}{n} \le 1$ \Longrightarrow $-1 < (-1)^n + \frac{1}{n} \le -1 + 1 = 0.$

Ainsi

$$\forall n \in \mathbb{N}^*, \ (-1)^n + \frac{1}{n} \in]-1,0] \ \cup \ \left]1, \frac{3}{2}\right]$$

Par conséquent, B est majorée par tout réel supérieur ou égal à $\frac{3}{2}$, et B est minorée par tout réel inférieur ou égal à -1.

2. Pour chaque ensemble A et B déterminer, s'il existe, les bornes supérieure et inférieure ainsi que le plus grand et le plus petit élément.

Solution : (1,5 point) Commençons par étudier l'ensemble A. D'après la question précédente, nous avons

$$=]-2, -\sqrt{2}] \cup [\sqrt{2}, 4[.$$

Donc

$$\sup A = 4 \quad \text{et} \quad \inf A = -2.$$

L'ensemble A ne possède ni de maximum ni de minimum.

(2,5 points) Étudions maintenant l'ensemble B. D'après la question précédente, nous avons

$$\forall n \in \mathbb{N}^*, \ (-1)^n + \frac{1}{n} \in]-1,0] \ \cup \ \left]1, \frac{3}{2}\right].$$

Or

$$\frac{3}{2} = (-1)^2 + \frac{1}{2} \implies \frac{3}{2} \in B.$$

Ainsi, $\frac{3}{2}$ est un majorant de B qui appartient à B. Ce qui nous permet de conclure

$$\sup B = \max B = \frac{3}{2}.$$

Pour trouver la borne inférieure de B, étudions la suite

$$\forall k \in \mathbb{N}, \ u_k = (-1)^{2k+1} + \frac{1}{2k+1} = -1 + \frac{1}{2k+1}.$$

Pour tout $k \in \mathbb{N}$, nous avons

$$u_k > \inf B$$
.

Donc par passage à la limite (la limite preserve les inégalités larges), on obtient

$$-1 = \lim_{k \to +\infty} u_k \ge \lim_{k \to +\infty} \inf B = \inf B.$$

Or comme -1 est un minorant de B, et inf B est le plus grand de minorants, on conclut inf $B \ge -1$. Par conséquent, l'ensemble B ne possède de minimum et

$$\inf B = -1.$$

Exercice 5 : Soit A un sous-ensemble non vide borné de \mathbb{R}_+ . On définit

$$\sqrt{A} = \left\{ \sqrt{x} : \ x \in A \right\}.$$

Montrer que

$$\inf(\sqrt{A}) = \sqrt{\inf(A)}.$$

Solution : (2 points) Comme A est borné et positive, alors $\inf(A)$ existe et il est positif. Comme A est non vide, alors \sqrt{A} l'est aussi. De plus, \sqrt{A} est positive et borné. Donc, $\inf(\sqrt{A})$ existe et positif.

Maintenant, pour tout $x \in A$, $x \ge \inf(A) \ge 0$. Comme la fonction $x \mapsto \sqrt{x}$ est strictement croissante, on en déduit que

 $\sqrt{x} \ge \sqrt{\inf(A)}, \quad \forall x \in A.$

Donc, $\sqrt{\inf(A)}$ est un minorant de \sqrt{A} . Il reste à montrer que $\sqrt{\inf(A)}$ est le plus grand minorant de \sqrt{A} . Supposons par absurde qu'il existe $\epsilon > 0$ tel que $\sqrt{x} \ge \sqrt{\inf(A)} + \epsilon > \sqrt{\inf(A)} \ge 0$. En passant au carré, on obtient

$$x \ge \inf(A) + 2\epsilon \sqrt{\inf(A)} + \epsilon^2 > \inf(A).$$

Ce qui est impossible car $\inf(A)$ est le plus grand minorant de A. Finalement, $\inf(\sqrt{A}) = \sqrt{\inf(A)}$.