

SÉRIES - TD 2

Exercice 1. Dans chacun des cas suivants, étudier la convergence simple et la convergence uniforme de la suite d'applications $(f_n)_{n\in\mathbb{N}}$, où pour tout $n\in\mathbb{N}$, $f_n:E\longrightarrow\mathbb{R}$.

1.
$$f_n(x) = \frac{x}{1+nx}$$
 sur $E = [0,1]$.

2.
$$f_n(x) = \frac{nx}{1 + n^2x^2}$$
 sur $E = \mathbb{R}$ puis sur $E =]-\infty, -a] \cup [a, +\infty[$ (où $a > 0)$.

3.
$$f_n(x) = \frac{x^n - 1}{x^n + 1} \text{ sur } E = \mathbb{R}_+.$$

4.
$$f_n(x) = \frac{1-x^n}{1+x^{2n}}$$
 sur $E = [0,1]$ puis sur $E = [0,a]$ où $a \in]0,1[$.

5.
$$f_n(x) = \frac{ne^{-x} + x^2}{n+x}$$
 sur $E = [0,1], \quad n \neq 0$

6.
$$f_n(x) = e^{-nx}\sin(nx) \text{ sur } E = \mathbb{R}_+$$

7.
$$f_n(x) = e^{-nx^2} \sin(nx^2)$$
 sur $E = [0, 1]$ puis sur $E = [a, 1]$ où $a \in [0, 1]$

8.
$$f_n(x) = \sin^n(x)$$
 sur $E = \left[0, \frac{\pi}{2}\right]$ puis sur $E = [0, a]$ où $a \in \left]0, \frac{\pi}{2}\right[$

9.
$$f_n(x) = \sin(\sqrt{x + 4\pi^2 n^2}) - \frac{x}{4\pi n} \text{ sur } E = \mathbb{R}_+, \quad n \neq 0$$

10.
$$f_n(x) = n^{\alpha} x e^{-nx} \text{ sur } E = \mathbb{R}_+, \text{ avec } \alpha \in \mathbb{R}$$

Exercice 2. Soit k un entier positif ou nul et $(f_n)_{n\in\mathbb{N}^*}$ définie par $f_n(x)=\frac{x^k}{x^2+n}$.

- 1. Pour quelles valeurs de k cette suite converge-t-elle uniformément sur \mathbb{R} .
- 2. Pour quelles valeurs de k cette suite converge-t-elle uniformément sur toute partie bornée de $\mathbb R$

Exercice 3. Soit $(f_n)_{n\geqslant 1}$ la suite des fonctions $\mathbb R$ dans $\mathbb R$, définie par

$$\begin{cases} 0 & \text{si } x \in]-\infty, 0], \\ n^2 x & \text{si } x \in [0, \frac{1}{n}], \\ (1-n^2)x + 2n - \frac{1}{n} & \text{si } x \in [\frac{1}{n}, \frac{2}{n}] \\ \frac{1}{n} & \text{si } x \in [\frac{2}{n}, +\infty[$$

- 1. Montrer que
 - (a) (f_n) converge simplement vers une fonctions f que l'on déterminera.
 - (b) $(f_n \circ f_n)$ ne converge pas simplement vers $f \circ f$.

- 2. Soit (f_n) une suite de fonctions de \mathbb{R} dans \mathbb{R} . On suppose que f_n converge uniformément sur \mathbb{R} vers une fonction f. Montrer que la suite $(f_n \circ f_n)$ converge simplement vers $f \circ f$.
- 3. Soit à présent la suite de fonctions $(f_n)_{n\geqslant 1}$ définie, pour tout $x\in\mathbb{R}$, par $(f_n(x))=x^2+\frac{1}{n}$. Montrer que
 - (a) la suite (f_n) converge uniformément sur \mathbb{R} vers une fonction f que l'on déterminera.
 - (b) la suite $(f_n \circ f_n)$ ne converge pas uniformément sur \mathbb{R} vers $f \circ f$.

Exercice 4. Soit $(f_n)_{n\in\mathbb{N}}$ la suite de fonctions définie sur [-1,1] par

$$f_n(x) = \frac{x}{1 + n^2 x^2}.$$

- 1. Montrer que $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur [-1,1] vers la fonction nulle.
- 2. Étudier la convergence de $(f'_n)_{n\in\mathbb{N}}$ sur [-1,1].
- 3. Soit $(g_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définie sur [-1,1] par

$$g_n(x) = \frac{\ln(1+n^2x^2)}{2n^2}.$$

Montrer que $(g_n)_{n\in\mathbb{N}^*}$ converge uniformément vers la fonction nulle sur [-1,1].

Exercice 5. Pour $n \in \mathbb{N}$, soit $f_n : [0,1] \longrightarrow \mathbb{R}$ définie par

$$f_n(x) = \begin{cases} n^2 x (1 - nx) & \text{si } x \in \left[0, \frac{1}{n}\right] \\ 0 & \text{sinon} \end{cases}$$

- 1. Étudier la convergence simple de $(f_n)_{n\in\mathbb{N}}$.
- 2. Calculer

$$\int_0^1 f_n(t) dt.$$

Y a-t-il convergence uniforme de la suite de fonctions $(f_n)_{n\in\mathbb{N}}$?

3. Soit $a \in]0,1[$. Étudier la convergence uniforme de $(f_n)_{n\in\mathbb{N}}$ sur [a,1].

Exercice 6. Calculer

$$\lim_{n \to \infty} \int_0^1 \frac{ne^x}{n+x} dx \quad \text{et} \quad \lim_{n \to \infty} \int_0^1 \frac{x^5}{(1+x^2)^n}.$$

Exercice 7.

- 1. Montrer que la suite $(f_n)_{n\geqslant 0}$ de fonctions d'finie sur [0,1] par $f_n(x)=\frac{ne^{-x}+x^2}{n+x}$ converge uniformément sur [0,1] vers une fonction f à déterminer.
- 2. En déduire la nature de la suite de terme général

$$u_n = \int_0^1 \frac{ne^{-x} + x^2}{n+x} dx$$

Exercice 8.

1. Montrer que la suite de fonction $(f_n)_{n\geqslant 0}$ définie sur [0,1] par

$$f_n(x) = \frac{n(x^3 + x)e^{-x}}{nx + 1}$$

converge simplement sur [0,1] vers une fonction f que l'on déterminera.

- 2. Montrer que l'on a convergence uniforme sur tout intervalle $[\alpha, 1]$ avec $\alpha \in]0, 1[$. A-t-on convergence uniforme sur [0,1]?
- 3. Montrer que $|f_n(x) f(x)|$ est bornée sur [0,1].
- 4. Déduire des questions précédentes la nature de la suite

$$u_n = \int_0^1 \frac{n(x^3 + x)e^{-x}}{nx + 1} dx$$

Exercice 9. Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'applications de \mathbb{R} dans \mathbb{R} convergeant uniformément sur \mathbb{R} vers une application $f: \mathbb{R} \longrightarrow \mathbb{R}$.

1. Soit $\varphi : \mathbb{R} \longrightarrow \mathbb{R}$ une application.

Montrer que $(f_n \circ \varphi)_{n \in \mathbb{N}}$ converge uniformément vers $f \circ \varphi$ sur \mathbb{R} .

- 2. Soit $\psi : \mathbb{R} \longrightarrow \mathbb{R}$ une application uniformément continue sur \mathbb{R} . Montrer que $(\psi \circ f_n)_{n \in \mathbb{N}}$ converge uniformément vers $\psi \circ f$ sur \mathbb{R} .

3. Que peut-on dire si
$$\psi$$
 n'est pas uniformément continue?
 $Prendre\ f_n(x)=x+rac{1}{n}\ et\ \psi(x)=x^2.$

Exercice 10. Soient $f: \mathbb{R} \to \mathbb{R}$ une fonction continue et $(f_n)_{n \in \mathbb{N}^*}$ une suite des fonctions définies sur \mathbb{R} par $f_n(x) = f(x + \frac{1}{n}).$

- 1. Montrer que $(f_n)_{n\in\mathbb{N}^*}$ converge simplement vers f sur \mathbb{R} .
- 2. $(f_n)_{n\in\mathbb{N}^*}$ converge-elle uniformément vers f sur \mathbb{R} ? justifier votre réponse.
- 3. Montrer que, pour tout $(a,b) \in \mathbb{R}^2$ la suite de fonctions $(f_n)_{n \in \mathbb{N}^*}$ converge uniformément vers f sur [a,b].