

Groupes et Morphismes de Groupes

1 Lois de composition interne

Exercice 1

Les propositions suivantes sont-elles vraies ou fausses? Justifier votre réponse.

- 1. La soustraction est un LCI dans \mathbb{Z} .
- 2. 0 est l'élément neutre de la soustraction dans \mathbb{Z} .
- 3. La soustraction dans \mathbb{Z} est associative.
- 4. 0 est l'élément neutre pour l'addition dans \mathbb{N} .
- 5. L'addition est associative dans \mathbb{N} .
- 6. L'addition est une LCI dans l'ensemble des nombres entiers pairs.
- 7. L'addition est une LCI dans l'ensemble des nombres entiers impairs.

Solution

- 1. Oui. $a b \in \mathbb{Z}$
- 2. Non car pas neutre à gauche.
- 3. Non car a (b c) = a b + c = (a b) (-c).
- 4. Oui a + 0 = 0 + a = a
- 5. Oui.
- 6. Oui car la somme de deux entiers pairs est paire.
- 7. Non car la somme de deux entiers impairs est paire.

Exercice 2

Préciser pour chacune des LCI \star définies ci-dessous si elle est associative, commutative, possède un élément neutre.

1.
$$\forall x, y \in \mathbb{R}^2, x \star y = \sqrt{x^2 + y^2}$$

2.
$$\forall x, y \in \mathbb{R}^2, x \star y = \ln(e^x + e^y)$$

Solution

1. Elle est clairement commutative.

Elle est associative:

$$(x \star y) \star z = \left(\sqrt{x^2 + y^2}\right) \star z = \sqrt{\left(\sqrt{x^2 + y^2}\right)^2 + z^2} = \sqrt{x^2 + y^2 + z^2} = \sqrt{x^2 + \left(\sqrt{y^2 + z^2}\right)^2} = x \star (y \star z)$$

(cela provient du fait que $x^2 + y^2 > 0$).

Le seul élément neutre qui peut venir à l'esprit est 0, mais il n'est pas neutre pour les nombres négatifs : $x \star 0 = \sqrt{x^2} = |x| \neq x$.

Si on n'a pas l'intuition, on peut le chercher : soit e un éventuel élément neutre et $x \in \mathbb{R}$. Alors

$$x\star e=x\Leftrightarrow \sqrt{x^2+e^2}=x\Rightarrow x^2+e^2=x^2\Rightarrow e^2=0$$

Le seul élément neutre possible est donc 0, mais il n'en est pas un.

2. Elle est clairement commutative.

Elle est associative :
$$(x \star y) \star z = (\ln(e^x + e^y)) \star z = \ln\left(e^{\ln(e^x + e^y)} + e^z\right) = \ln\left(e^x + e^{\bar{y}} + e^z\right) = \ln\left(e^x + e^{\ln(e^y + e^z)}\right) = x \star (y \star z)$$

(les fonctions exponentielle et logarithme népérien sont bijections réciproques l'une de l'autre).

Si y est l'élément neutre alors $x \star y = x \Leftrightarrow \ln(e^x + e^y) = x = \ln(e^x) \Leftrightarrow e^x + e^y = e^x \Leftrightarrow e^y = 0$. $e^y = 0$ est faut pour tout $y \in \mathbb{R}$, donc il n'y a pas d'élément neutre.

Exercice 3

Pour tout $(x; y) \in [0; 1]^2$, on pose :

$$x \star y = x + y - xy$$

- 1. Montrer que ($[0;1];\star$) est un magma commutatif et associatif.
- 2. Montrer que ($[0;1];\star$) possède un elément neutre.
- 3. Quels sont les éléments inversibles de $([0;1];\star)$?

Solution

1. Magma : Si $0 \le x \le 1$ et $0 \le y \le 1$, alors $0 \le 1 - x \le 1$ et $0 \le 1 - y \le 1$.

D'où
$$0 \le (1-x)(1-y) = 1 - (x+y-xy) \le 1$$
.

Ainsi
$$-1 \leqslant (-(x+y-xy) \leqslant 0 \text{ et } 0 \leqslant x+y=xy \leqslant 1.$$

Commutatif: Évident.

Associatif:
$$x \star (y \star z) = x + (y \star z) - x(y \star z) = x + (y + z - yz) - x(y + z - yz) = x + y + z - xy - xz - yz + xyz$$
, et $(x \star y) \star z = (x \star y) + z - (x \star y)z = (x + y - xy) + z - (x + y - xy)z = x + y + z - xy - xz - yz + xyz$.

- 2. Pour qu'un élément neutre e existe, il doit vérifier que pour tout $x \in [0;1], x \star e = x = x + e xe$. D'où nécessairement, pour tout x, e(x-1) = 0. Donc e = 0. On vérifie aisément que 0 est bien un élément neutre.
- 3. Deux éléments x, y sont inverses l'un de l'autre si et seulement si $x \star y = 0 = x + y xy$, c'est-â-dire y(x-1) = x.

Si x = 1, ceci est impossible.

Si $x \neq 1$, nous avons $y = \frac{x}{x-1} \leqslant 0$. Le seul elément inversible de [0;1] est donc 0 .

Exercice 4

Soit E un ensemble muni d'une loi de composition interne associative \star et d'un élément neutre. Un élément de E est dit idempotent si $x \star x = x$.

- 1. Montrer que si x et y sont idempotents et commutent, alors $x \star y$ est idempotent.
- 2. Montrer que si x est idempotent et inversible alors x^{-1} est idempotent.

Solution

- 1. $(x \star y) \star (x \star y) = (x \star x) \star (y \star y)$ (associative et commute). C'est égal à $x \star y$. Donc $(x \star y)$ est idempotent.
- 2. Nous savons que si x et y sont inversibles alors $x \star y$ aussi et l'inverse est $y^{-1} \star x^{-1}$, en prenant y = x et en utilisant le fait que $x \star x = x$, nous avons $x^{-1} = (x \star x)^{-1} = x^{-1} \star x^{-1}$ et l'inverse est bien idempotent. On peut aussi observer que si $x \star x = x$ en composant à droite par x^{-1} , on a $x \star x \star x^{-1} = x \star x^{-1}$ donc x = e donc si x et y sont idempotent et inversibles x = y = e donc $x \star y$ est idempotent.

Exercice 5

Soit E un ensemble muni d'une loi de composition interne \star associative.

Pour tout a de E, on définit les applications g_a et d_a de E dans $E: \forall x \in E, d_a(x) = x \star a$ et $g_a(x) = a \star x$.

- 1. Montrer que s'il existe a dans E tel que g_a et d_a soient surjectives, alors E possède un élément neutre pour la loi \star .
- 2. Montrer que si pour tout a de E, les applications g_a et d_a sont surjectives, alors tout élément de E possède un inverse pour la loi \star .

Solution

- 1. Puisque g_a et d_a sont surjective, il existe e et f tels que $e \star a = a = a \star f$.
 - Montrer que e=f. Toujours par surjectivité, il existe y et z tels que $y\star a=e$ et $a\star z=f$. Nous avons alors

$$e \star f = (y \star a) \star f = y \star (a \star f) = y \star a$$
$$= e$$
$$e \star f = e \star (a \star z) = (e \star a) \star z = a \star z$$
$$= f$$

D'où l'égalité.

— Montrons maintenant que $\forall x \in E, x \star f = f \star x = x$.

Par surjectivité des applications, il existe y et z tels que $y \star a = x = a \star z$. Nous avons alors

$$\begin{aligned} x\star f &= (y\star a)\star f = y\star (a\star f) = y\star a = x\\ f\star x &= f\star (a\star z) = (f\star a)\star z = a\star z = x \end{aligned}$$

Donc f est bien un élément neutre pour la loi \star .

2. Si les applications sont surjectives, pour tout a, alors nous venons de voir qu'il existe un élément neutre f.

Ainsi, pour tout a, par surjectivité, il existe a_d et a_q tels que $a_q \star a = f = a \star a_d$.

Il ne reste donc plus qu'à montrer que $a_d = a_q$:

$$a_g = a_g \star f = a_g \star (a \star a_d) = (a_g \star a) \star a_d = f \star a_d = a_d$$

2 Groupes, Sous-Groupes

Exercice 6

 $\overline{\text{Sur }G} = \mathbb{R}_+^* \times \mathbb{R}$, on definit l'opération \star par :

$$(x; y) \star (x'; y') = (xx'; xy' + y)$$

Montrer que $(G; \star)$ est un groupe.

Solution

- Si $(x; x') \in (\mathbb{R}^+_+)^2$, alors $xx' \in \mathbb{R}_+$. Il est évident que pour tout (x; y) et (x'; y') de $G, xy' + y \in \mathbb{R}$. Donc la loi \star est bien une loi de composition interne.
- Nous avons $(1;0) \in G$ et pour tout $(x;y) \in G$, $(x;y) \star (1;0) = (x \times 1; x \times 0 + y) = (x;y)$ et $(1;0) \star (x;y) = (1 \times x; 1 \times y + 0) = (x;y)$. Donc (1;0) est un élément neutre pour \star .
- Soit $(x;y) \in G$, alors $(x';y') = \left(\frac{1}{x}; -\frac{y}{x}\right) \in G(x>0)$. Et nous avons $(x;y) \star (x';y') = \left(\frac{x}{x}; \frac{-xy+yx}{x}\right) = (1;0)$. De même $(x';y') \star (x;y) = (1;0)$. Donc tout élément de G est inversible.
- $\text{Enfin, pour tout } (x;y), (x';y'), (x'';y'') \text{ de } G \text{ nous avons } (x;y) \star ((x';y') \star (x'';y'')) = (x;y) \star (x'y';x'y'' + y') = (xx'x'';x'y'' + xy' + y) \ ((x;y) \star (x';y')) \star (x'';y') = (x';x' + y) \star (x'';y'') = (xx'x'';xx'y'' + xy' + y)$

Donc $(G; \star)$ est un groupe.

Exercice 7

Soit les quatre fonctions de \mathbb{R}^* dans \mathbb{R}^* :

$$f_1(x) = x$$
 ; $f_2(x) = \frac{1}{x}$; $f_3(x) = -x$; ; $f_4(x) = -\frac{1}{x}$

Montrer que $G = \{f_1; f_2; f_3; f_4\}$ muni de la loi \circ est un groupe.

Solution

 f_1 est l'identité, donc l'ensemble possède déjà un elément neutre. Ensuite, $f_2 \circ f_3 = f_3 \circ f_2 = f_4 \in G, f_2 \circ f_4 = f_4 \circ f_2 = f_3 \in G, f_3 \circ f_4 = f_4 \circ f_3 = f_2, f_2 \circ f_2 = f_1 = f_3 \circ f_3 = f_4 \circ f_4 \in G.$

Donc nous avons bien une lci et $(G; \circ)$ est bien un magma.

Nous venons de voir que tout elément était son propre inverse et nous savons déja que la loi o est associative.

Donc $(G; \circ)$ est bien un groupe.

La loi est donc associative.

Donc $(G; \star)$ est un groupe.

Exercice 8

Quel est le plus petit sous-groupe de $(\mathbb{R}; +)$ (respectivement de $(\mathbb{R}^*; \times)$) contenant 1? Contenant 2?

Solution

Un sous-groupe de $(\mathbb{R};+)$ contenant 1 doit nécessairement contenir l'élément neutre 0, mais aussi 1+1=2, puis 3, etc, donc \mathbb{N} , mais aussi tous les opposés, done \mathbb{Z} . Or \mathbb{Z} étant un sous-groupe, on a trouvé le plus petit. Avec le même raisonnement, on montre que le plus petit sous-groupe contenant 2 est $2\mathbb{Z}$.

Pour les sous-groupes de $(\mathbb{R}^*; x)$, on doit contenir 1 et son inverse : 1 . Donc en fait le groupe réduit à l'élément neutre $\{1\}$ est le plus petit.

S'il contient 2, il contient aussí l'element neutre $1=2^0$, mais aussi $2\times 2=4=2^2, 4\times 2=2^3$, etc. C'est-ì-dire $\{2^k/k\in\mathbb{N}\}.$

Il doit aussi contenir les inverses de tous ces nombres. Finalement le plus petit sous-groupe de $(\mathbb{R}^*; x)$ est $\{2^k/k \in \mathbb{Z}\}$ (à condition d'avoir vérifié, bien évidemment, que c'est un sous-groupe).

Exercice 9

Les ensembles suivants, munis de l'addition des réels sont-ils des groupes? Justifier.

1.
$$\{a\sqrt{2}/a \in \mathbb{N}\}$$

$$2. \{a\sqrt{2} + b\sqrt{3}/a, b \in \mathbb{Z}\}$$

3.
$$\{a\sqrt{2} + b\sqrt{3}/a \in \mathbb{Z}, b \in \mathbb{N}\}$$

Solution

- 1. L'élément neutre étant 0 , les éléments ne sont pas inversibles (car si $a \in \mathbb{N}^*, -a \notin \mathbb{N}$).
- 2. Si $x = a\sqrt{2} + b\sqrt{3}$ et $y = d'\sqrt{2} + b'\sqrt{3}$, alors $x + y = (a + a')\sqrt{2} + (b + b')\sqrt{3} \in G$. Nous avons donc stabilité par addition qui conserve sa propriété d'associativité. L'élément neutre est $0 = 0\sqrt{2} + 0\sqrt{3}$, l'inverse est $-a\sqrt{2}-b\sqrt{3}$. C'est donc bien un groupe.

Autre Méthode

On peut aussi montrer que pour tout $a\sqrt{2} + b\sqrt{3}$ et $a'\sqrt{2} + b'\sqrt{3}$ avec $(a, b, a', b') \in \mathbb{R}^4$, $(a\sqrt{2} + b\sqrt{3}) - (a'\sqrt{2} + b'\sqrt{3}) = (a - a')\sqrt{2} + (b - b')\sqrt{3}.$

Or $(a-a') \in \mathbb{Z}$ et $(b-b') \in \mathbb{Z}$ donc il appartient bien à $\{a\sqrt{2} + b\sqrt{3}/a, b \in \mathbb{Z}\}$. Donc c'est un sous-groupe $de(\mathbb{R},+)$

3. Cette fois ce n'est pas un groupe puisque l'inverse n'est pas dans l'ensemble (si $b \in \mathbb{N}$, alors $-b \notin \mathbb{N}$).

Exercice 10

Les ensembles suivants, munis de la multiplication des réelles sont-ils des groupes? Justifier.

1.
$$\left\{1, -1, \frac{1}{2}, 2\right\}$$

2.
$$\{a2^n, a \in \{-1, 1\}, n \in \mathbb{Z}\}$$

3.
$$\left\{a+b\sqrt{2}, a, b \in \mathbb{Q}^*\right\}$$

Solution

- 1. La loi n'est pas interne : tout produit entre deux éléments distincts de l'ensemble est bien dans l'ensemble, mais $2 \times 2 = 4$ n'est pas dans l'ensemble.
- 2. La loi est bien interne : $a_1 2^{m_1} a_2 2^{m_2} = (a_1 a_2) 2^{m_1 + m_2}$ avec $a_1 a_2 = \pm 1$ et $n_1 + n_2 \in \mathbb{Z}$, elle est associative. L'élément neutre est $1 = 1 \times 2^0$. L'inverse de $a2^n$ est $a2^{-n}$ avec $-n \in \mathcal{Z}$. Donc c'est bien un groupe.
- 3. L'élément neutre n'est pas dans l'ensemble : $1=1+0\times\sqrt{2}$ or on doit avoir $b\in Q^*$ et $1=a+b\sqrt{2}\Leftrightarrow\sqrt{2}=1$ $\frac{1-a}{b} \in \mathbb{Q}(b \text{ est non nul })$, ce qui est absurde car $\sqrt{2}$ est irrationnel.

Exercice 11

Soit S un sous-groupe d'un groupe G et $a \in G$. Montrer que $a^{-1}Sa = \{c = a^{-1}ba/b \in S\}$ est un sous-groupe de G, dit conjugué de S.

Solution

- G étant un groupe, il est clair que $a^{-1}Sa \subset G$.
- Nous avons $1_G = a^{-1}1_G a \in a^{-1}Sa$.
- Si $d = a^{-1}ba$ et $e = a^{-1}ca$ sont deux éléments de $a^{-1}Sa$, alors

$$de^{-1} = a^{-1}ba (a^{-1}ca)^{-1} = a^{-1}ba (a^{-1}c^{-1}a) = a^{-1} (bc^{-1}) a \in a^{-1}Sa$$

Car S étant un sous-groupe, $bc^{-1} \in S$

Exercice 12

Soit G un groupe et $A \subset G$, non vide. On pose :

$$N(A) = \left\{x \in G/x^{-1}Ax = A\right\}$$

Montrer que N(A) est un sous-groupe de G.

Solution

Version sûr de ce que l'on fait

- $-1^{-1}A1 = 1A1 = A$, donc $1 \in N(A)$.
- Soit x et y deux éléments de N(A). Nous avons $(xy)^{-1} = y^{-1}x^{-1}$, d'où $(xy)^{-1}A(xy) = y^{-1}x^{-1}Axy =$
- $y^{-1}Ay = A$. Donc $xy \in N(A)$. Si $x \in N(A)$, alors $x^{-1}Ax = A$. En multipliant par x à gauche et x^{-1} à droite, nous avons $A = xAx^{-1} = A$ $(x^{-1})^{-1} A x^{-1}$. Donc $x^{-1} \in N(A)$.

Version on détaille

- Soit $y \in A$, montrons que $y \in 1^{-1}A1.y = 1^{-1}y1 \in 1^{-1}A1.$
 - Soit $y \in 1^{1-}A1$, montrons que $y \in A$. Il existe $x \in A$ tel que $y = 1^{-1}x1 = x \in A$.
 - Donc $A = 1^{-1}A1 \text{ et } 1 \in N(A).$
- Soit $x \in N(A)$. Montrons que $xAx^{-1} = A$.
 - Soit $z \in A$. Puisque $A = x^{-1}Ax$, il existe $y \in A$ tel que $z = x^{-1}yx$. D'où $z = xyx^{-1} \in xAx^{-1}$.
 - Soit $z \in xAx^{-1}$. Il existe $y \in A$ tel que $z = xyx^{-1}$. Or $A = x^{-1}Ax$, donc il existe $t \in A$ tel que $y = x^{-1}tx$.
 - Ainsi, $z = xx^{-1}txx^{-1} = t = A$.
 - Donc $A = xAx^{-1}$ et $x^{-1} \in N(A)$.
- Soit x et y deux éléments de N(A). Nous avons $x^{-1}Ax = A = y^{-1}Ay$. Montrons que $(xy)^{-1}A(xy) = A$. Soit $z \in (xy)^{-1}$ Axy.
 - Il existe $t \in A$ tel que $z = (xy)^{-1}t(xy) = y^{-1}x^{-1}txy$.
 - Or $A = x^{-1}Ax$, donc $x^{-1}tx \in x^{-1}Ax = A$.
 - De même, un posant $u = x^{-1}tx \in A$, nous avons $y^{-1}uy \in y^{-1}Ay = A$. donc finalement $z \in A$.
 - Soit $z \in A$. Puisque $A = y^{-1}Ay$, il existe $t \in A$ tel que $z = y^{-1}ty$.
 - Mais de même, il existe $u \in A$ tel que $t = x^{-1}ux$. D'où $z = y^{-1}x^{-1}uxy = (xy)^{-1}u(xy)$.

 - Donc $z \in (xy)^{-1}A(xy)$. Donc $A = (xy)^{-1}A(xy)$ et $xy \in N(A)$.

Donc N(A) est bien un sous-groupe de G.

Exercice 13

Soit E un ensemble, (G; -) un groupe et f une bijection de E vers F. Pour $(x; y) \in E^2$, on pose xy =

Montrer que la loi de composition interne ainsi définie sur E munit E d'une structure de groupe.

Solution

- Soit x, y, z trois éléments de E. Alors $x(yz) = xf^{-1}(f(y)f(z)) = f^{-1}\left(f(x)f\circ f^{-1}(f(y)f(z))\right) = f^{-1}(f(x)f(y)f(z)) = f^{-1}(f(x)f(y)f(z))$ $f^{-1}(f \circ f^{-1}(f(x)f(y))f(z)) = f^{-1}(f(x)f(y))z = (xy)z$. La loi est associative.
- Si e est un élément neutre alors nécessairement, x = xe = f 1(f(x)f(e)). En composant par f, nous avons f(x) = f(x)f(e). Or $f(x) \in G$, groupe, donc est inversible et $1_G = f(e)$. Par bijectivité de f, nous avons $e = f^{-1}(1_G)$. On vérifie alors aisément que $e = f^{-1}(1_G)$ est un élément neutre pour la loi (à droite ET à gauche).
- Soit $x \in E$. Posons alors $x^{-1} = f^{-1}(f(x)^{-1})$. Ainsi $xx^{-1} = f^{-1}(f(x)f(x^{-1})) = f^{-1}(f(x)f(x)^{-1}) = f^{-1}(f(x)f(x)^{-1})$ $f^{-1}(1_G) = e$. De même pour $x^{-1}x$. Ainsi tout élément de E est inversible.

Donc E est bien muni d'une structure de groupe.

Exercice 14

Soit $(E;\star)$ et $(F;\cdot)$ deux groupes. On munit l'ensemble produit $E\times F$ de la loi de composition \otimes définie par :

$$\forall (x; y), (x'; y') \in E \times F, (x; y) \otimes (x'; y') = (x \star x'; y \cdot y')$$

- 1. Montrer que $(E \times F; \otimes)$ est un groupe.
- 2. Soit E' un sous-groupe de E et F' un sous-groupe de F. Montrer que $E' \times F'$ est un sous-groupe de $E \times F$, muni de la loi \otimes .

Solution

- 1. C'est la loi produit, donc la démonstration est faite dans le cours.
- 2. Nous avons bien $E' \times F' \subset E \times F$. Puisque E' et F' sont des sous-groupes, ils contiennent respectivement les neutres de E et F, donc $E' \times F'$ contient le neutre de $E \times F$. Enfin, par construction, si $(x;y) \in E' \times F'$ et $(x';y') \in E' \times F'$, alors $(x;y) \otimes (x'^{-1};y'^{-1}) = (x \star x'^{-1};y \cdot y'^{-1}) \in E' \times F'$ car E' et F' sont des sous-groupes. Plus simplement, d'après la question précédente, $E' \times F'$ est un groupe inclu dans $E \times F$, donc c'est un sousgroupe.

Exercice 15

Soit G =]-1,1[muni de la loi \star définie par : $x \star y = \frac{x+y}{1+xy}$. Montrer que (G,\star) est un groupe abélien.

Solution

- La loi ★ est clairement commutative.
- LCI Pour tout $y \in G$, la fonction $f: x \mapsto x \star y$ est strictement croissante $\left(f'(x) = \frac{1-y^2}{(1+xy)^2} > 0\right)$ et f(-1) = -1 et f(1) = 1, donc pour tout $x \in G$, $f(x) \in G$. La loi est donc bien une lci. Autre méthode : nous avons 1 + xy > 0, donc $x \star y \in]-1; 1[\Leftrightarrow -1 - xy < x + y < 1 + xy \Leftrightarrow 0 < 1 + x + xy$ et 1 + xy - x - y > 0. Or (1 + x) > 0 et (1 + y) > 0, donc (1 + x)(1 + y) > 0, d'où 1 + x + y + xy > 0. De même avec (1-) > 0 et 1 - y > 0.

- Associative Soit $x, y, z \in G$,

$$x \star (y \star z) = x \star \left(\frac{y+z}{1+yz}\right) = \frac{x + \frac{y+z}{1+yz}}{1 + x\left(\frac{y+z}{1+yz}\right)}$$
$$= \frac{x + y + z + xyz}{1 + yz + xy + xz}$$

Cette dernière expression est invariante par permutation sur x, y et z, donc $x \star (y \star z) = z \star (y \star x)$. Et par commutativité, cette dernière expression est égale à $(x \star y) \star z$

- Élément neutre 0 est clairement l'élément neutre : $x \star 0 = 0 \star x = \frac{x}{1} = x$.
- Inversible L'inverse de x est alors tout simplement $-x \in G$: $x \star (-x) = \frac{x-x}{1-x^2} = 0$.

Exercice 16

Soit G un groupe et H et K deux sous-groupes de G.

- 1. Montrer que $H \cap K$ est un sous-groupe de G.
- 2. Montrer que $(H \cup K \text{ est un sous-groupe de } G) \iff (H \subset K \text{ ou } K \subset H).$

Solution

- 1. Si H et K sont des sous-groupes, ils contiennent l'élément neutre, donc $H \cap K$ aussi. Si x et y sont dans l'intersection, alors x et y sont dans K, donc $xy^{-1} \in K$; de même $xy^{-1} \in H$. Donc $xy^{-1} \in H \cap K$ et nous avons bien la stabilité par produit et passage à l'inverse.
- 2. La réciproque est claire : si l'un des deux contient l'autre, l'union est égale à l'autre, donc est un sous-groupe. Démontrons le sens direct par contraposée. Si H n'est pas inclus dans K et K pas inclus dans H, alors $H \cap \bar{K} \neq \emptyset$ et $\bar{H} \cap K \neq \emptyset$. Prenons $x \in H \cap \bar{K}$ et $y \in \bar{H} \cap K$. Ces deux éléments sont dans $H \cup K$. Puisque $x \in H$ et que H est un sous-groupe, alors x^{-1} est aussi dans H. Supposons que $xy \in H$, alors $y = x^{-1}xy \in H$, ce qui est impossible, donc $xy \notin H$. De même $xy \notin K$. Finalement $xy \notin H \cup K$ et $H \cup K$ n'est pas stable pour la loi du groupe, donc n'est pas un sous-groupe de G.

Exercice 17

- 1. Soit $n \in \mathbb{N}$. Montrer que $n\mathbb{Z}$ est un sous-groupe de \mathbb{Z} .
- 2. Montrer que tout sous-groupe de \mathbb{Z} est de la forme $n\mathbb{Z}$ pour un certain $n \in \mathbb{N}$.
- 3. Soit $a, b \in \mathbb{Z}$. On note $a\mathbb{Z} + b\mathbb{Z} = \{au + bv; u, v \in \mathbb{Z}\}$. Montrer que $a\mathbb{Z} + b\mathbb{Z}$ est un sous-groupe de \mathbb{Z} . En particulier, $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$ pour un certain $d \in \mathbb{Z}$. Montrer alors que $d = a \wedge b$.

Solution

L'ensemble \mathbb{Z} est bien évidemment muni de sa loi + pour devenir un groupe. On rappelle que $n\mathbb{Z} = \{kn/k \in \mathbb{Z}\}.$

- 1. L'élément neutre $0 = 0 \times n$ est dans $n\mathbb{Z}$. Si x = kn et y = k'n sont dans $n\mathbb{Z}$, alors x y = (k k')n est aussi dans $n\mathbb{Z}$.
- 2. Soit G un sous groupe de \mathbb{Z} . Il contient donc $0.\mathrm{Si}G = \{0\}$, alors $G = 0\mathbb{Z}$. Sinon, il contient un élément $x \neq 0$. Mais puisque c'est un groupe, il contient aussi -x. Ainsi $G \cap \mathbb{N}^*$ est une partie de \mathbb{N} non vide et contient donc un plus petit élément que l'on note n. Montrons alors que $G = n\mathbb{Z}$ par double inclusion :
 - Soit $x \in G$. Si x = 0, alors $x \in n\mathbb{Z}$. Sinon, comme précédemment, $|x| \in G$. De plus, en effectuant la division euclidienne de |x| par n, nous avons |x| = nq + r avec $0 \le r < n$. Or $|x| \in G$ et $n \in G$, d'où par stabilité, $nq \in G$ et $r = x nq \in G$. Or n était le plus petit élément strictement positif de G. Ainsi r = 0 et $x = nq \in n\mathbb{Z}$.
 - Soit $x = nk \in n\mathbb{Z}$. Alors par stabilité, puisque $n \in G, nk$ et donc x est dans G.

Nous avons donc montré que tout sous groupe de \mathbb{Z} est de la forme $n\mathbb{Z}$. Or nous avons montré à la question précédente que tous les ensembles $n\mathbb{Z}$ étaient des sous-groupes de \mathbb{Z} . Finalement, les sous-groupes de \mathbb{Z} sont les $n\mathbb{Z}$.

3. Nous avons $0 = a \times 0 + b \times 0 \in a\mathbb{Z} + b\mathbb{Z}$. Soit $x = ak_1 + bk_2 \in a\mathbb{Z} + b\mathbb{Z}$ et $y = ak_1' + bk_2' \in a\mathbb{Z} + b\mathbb{Z}$. Alors $x - y = a\left(k_1 - k_1'\right) + b\left(k_2 - k_2'\right) \in a\mathbb{Z} + b\mathbb{Z}$. Donc $a\mathbb{Z} + b\mathbb{Z}$ est un sous groupe de \mathbb{Z} , donc s'écrit $d\mathbb{Z}$. On en déduit qu'il existe k et k' tels que ak + bk' = d (car $d \in d\mathbb{Z}$). Donc $a \wedge b \mid d$. De plus, d'après la relation de Bézout, il existe u et v tels que $au + bv = a \wedge b$, donc $a \wedge b \in a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$. Donc il existe $k \in \mathbb{Z}$ tel que $dk = a \wedge b$. Donc $d \mid a \wedge b$. Finalement $d = a \wedge b$.

document

Soit H un groupe abélien. Un élément $x \in H$ est dit d'ordre fini lorsqu'il existe $n \in \mathbb{N}$ tel que la somme $x + \cdots + x$ (n fois) soit égale à 0. Montrer que l'ensemble des éléments d'ordre fini est un sous-groupe abélien de H. Notons G l'ensemble des éléments d'ordre fini de H.

Solution

- Inclusion : Nous avons clairement $G \subset H$.
- Élément neutre : Nous avons 0 = 0, donc $0 \in G$.
- Stabilité par passage à l'inverse : Soit $x \in G$. Il existe n tel que $x + \cdots + x = 0$ (n fois). D'où $(-x) + \cdots + (-x) = -(x + \cdots + x) = -0 = 0$.
- Stabilité par somme : Soit x et y dans G. Il existe n_x et n_y tels que $x + \cdots + x = 0$ (n_x fois) et $y + \cdots + y = 0$ (n_y fois). Alors, par commutativité de +(H est un groupe abélien), nous avons (x + y) $y \in G$.

Donc $x + y \in G$. G est un sous-groupe de H et comme H est commutatif, G aussi.

Exercice 19

Décrire tous les homomorphismes de groupes de $\mathbb Z$ dans $\mathbb Z.$

Déterminer ceux qui sont injectifs et ceux qui sont surjectifs.

Solution

Soit $f:(\mathbb{Z},+)\longrightarrow (\mathbb{Z},+)$ un morphisme de groupe. Comme tout morphisme f vérifie f(0)=0. Notons a=f(1). Alors

$$f(2) = f(1+1) = f(1) + f(1) = a + a = 2.a.$$

De même, pour $n \ge 0$:

$$f(n) = f(1 + \dots + 1) = f(1) + \dots + f(1) = n \cdot f(1) = n \cdot a.$$

Enfin comme

$$0 = f(0) = f(1 + (-1)) = f(1) + f(-1) = a + f(-1),$$

alors f(-1) = -a et pour tout $n \in \mathbb{Z}$:

$$f(n) = \text{n.a.}$$

Donc tous les morphismes sont de la forme $n \mapsto n.a$, avec $a \in \mathbb{Z}$. Un morphisme $n \mapsto n.a$ est injectif si et seulement si $a \neq 0$, et surjectif si et seulement si $a = \pm 1$.

Exercice 20

1. Soit G un groupe, pour tout $h \in G$, on définit l'application

$$\phi_h: \quad G \to G$$
$$g \mapsto hgh^{-1}$$

- (a) Montrer que, pour tout $h \in G$, l'application ϕ_h est un automorphisme de groupe $(\phi_h \in Aut(G))$.
- (b) Considérons l'application :

$$\phi: G \mapsto \phi_h$$

Montrer que ϕ est un morphisme de groupe.

(c) On suppose que (G,\cdot) est commutatif. Déterminer le noyau de ϕ .

Solution

1. Il faut montrer que ϕ_h est un morphisme de G dans G, bijectif.

 $\forall g \in G, \phi_h(e) = heh^{-1} = e$ donc le neutre a pour image le neutre.

 $\forall (g,g') \in G^2, \phi_h(gg') = hgg'h^{-1} = hgh^{-1}hg'h^{-1} = \phi_h(g)\phi_h(g')$ donc il s'agit bien d'un morphisme.

On remarque que $\phi_{h^{-1}} \circ \phi_h(g) = \phi_{h^{-1}}(hgh^{-1}) = h^{-1}hgh^{-1}h = g$

Donc phi_h admet une réciproque $\phi_{h^{-1}}$ donc ϕ_h est bijective.

- 2. On a $\phi_{hh'}(g) = hh'gh^{-1}h'^{-1} = \phi_h \circ \phi_{h'}(g)$ et $\phi_e = Id$ donc on a bien un morphisme.
- 3. Si G est commutatif, $\phi_h = Id$ donc le noyau est G.

Exercice 21

On note \mathbb{C}^* l'ensemble des nombres complexes non nuls.

1. Montrer que l'application

$$\begin{array}{ccc} f & \mathbb{C}^* & \to & \mathbb{R}^* \\ & z & \mapsto & |z| \end{array}$$

est un morphisme de groupes. On note U le noyau du morphisme ci-dessus.

2. Construire un isomorphisme de groupes de \mathbb{C}^* vers le groupe produit $\mathbb{R}^* \times U$.

Solution

1. Soit
$$(z, z') \in \mathbb{C}^{*2}$$
, $f(\frac{z}{z'}) = \left| \frac{z}{z'} \right| = \frac{|z|}{|z'|} = \frac{f(z)}{f(z')}$

2. On pose
$$\psi$$
 $\mathbb{C}^* \to \mathbb{R}^* \times U$ $(|z|, e^{iarg(z)})$

On démontre aisément que c'est un isomorphisme

Exercice 22

Soit (G,\star) un groupe, pour tout $h \in G$, on définit l'application

$$\phi_h: G \to G$$

$$g \mapsto h \star g \star h^{-1}$$

- 1. Montrer que, pour tout $h \in G$, l'application ϕ_h est un automorphisme de groupe $(\phi_h \in Aut(G))$.
- 2. Déterminer son inverse ϕ_h^{-1} .
- 3. Montrer que $\phi_h \circ \phi_k = \phi_{h \star k}$, pour tout $h, k \in G$.
- 4. Considerons l'application :

$$\phi: \quad G \to \operatorname{Aut}(G)$$
$$g \mapsto \phi_g$$

Montrer que ϕ est un morphisme de groupe.

5. On suppose que (G,\cdot) est commutatif. Déterminer le noyau de ϕ .

Solution

1. • Bijection?

Soit
$$g' \in G$$
, on résout pour $g \in G$, $\Leftrightarrow h^{-1} \star h \star g \star h^{-1} = g'$
 $\Leftrightarrow h^{-1} \star h \star g \star h^{-1} \star h = h^{-1} \star g' \star h$
 $\Leftrightarrow g = h^{-1} \star g' \star h$

On a donc obtenu un antécédent unique de g' par ϕ_h . Donc il s'agit bien d'une bijection.

• Morphisme?

$$\forall (g, g') \in G^2, \ \phi_h(g \star g') = h \star g \star g' \star h^{-1}$$

$$= h \star g \star (h^{-1} \star h) \star g' \star h^{-1} = (h \star g \star h^{-1}) \star (h \star g' \star h^{-1}) = \phi_h(g) \star \phi_h(g')$$

Il s'agit bien d'un morhpisme de groupe.

• On aurait pu montrer séparément l'injectivité :

Si
$$e$$
 est le neutre, on a $\phi_h(g) = e \Leftrightarrow h \star g \star h^{-1} = e \Leftrightarrow h^{-1} \star h \star g \star h^{-1} \star h = h^{-1} \star e \star h \Leftrightarrow g = e$

Donc $ker(\phi) = \{e\}$

2. On résout d'abord la question 3)

$$\forall (h, h') \in G, \ \forall g \in G, \ \phi_{h \star h'}(g) = h \star h' \star g \star (h \star h')^{-1} = h \star h' \star g \star h'^{-1} \star h^{-1} = h \star (h' \star g \star h'^{-1}) \star h^{-1} = \phi_h(\phi_{h'}(g)) = (\phi_h \circ \phi_{h'})(g)$$

donc $\phi_{h\star h'} = \phi_h \circ \phi_{h'}$

Donc ϕ est un morphisme de groupe.

on en déduit la question 2 : D'après la relation précédente, $\phi_h^{-1} = \phi_{h^{-1}}$ car $\phi_{h\star h^{-1}} = \phi_e = Id$ évidemment.

3.

5. Si G est commutatif, $\forall (h,g) \in G^2$, $\phi_h(g) = h \star g \star h^{-1} = g \star h \star h^{-1} = g$ Donc toute application ϕ_h est l'identité donc $Ker(\phi) = G$

Exercice 23

Soit G un groupe. Montrer que l'application $g \mapsto g^{-1}$ est un morphisme de groupes $G \to G$, si et seulement si, G est abélien.

Solution

On pose
$$\phi: \begin{array}{ccc} G & \rightarrow & G \\ g & \mapsto & g^{-1} \end{array}$$

Si G est abélien alors si alors

$$\forall (g,g') \in G^2, \phi(gg') = (gg')^{-1} = g'^{-1}g^{-1} = g^{-1}g'^{-1} = \phi(g)\phi(g')$$
 donc ϕ est un morphisme.
Si ϕ est un morphisme : $\forall (g,g') \in G^2, (gg')^{-1} = g^{-1}g'^{-1}$

Si on prend l'inverse : $gg' = (g^{-1}g'^{-1})^{-1} = (g'^{-1})^{-1}(g^{-1})^{-1} = g'g$ donc G est abélien.

Exercice 24

Les applications f_1 et f_2 , sont-elles des morphismes de groupes? Si c'est le cas, déterminer le noyau et l'image.

$$f_1: (\mathbb{Z}^2, +) \to (\mathbb{Z}, +), (a, b) \mapsto a - b$$

 $f_2: (\mathbb{Z}^3, +) \to (\mathbb{Q}, +), (a, b, c) \mapsto 2^a 3^b 5^c$

Solution

1. Soit $((a,b),(c,d)) \in (\mathbb{Z}^2)^2$ alors $f_1((a,b)+(c,d)) = f_1((a+c,b+d)) = (a+c)-(b+d) = (a-b)+(c-d) = f_1((a,b)) - f_1((c,d))$.

C'est donc un morphisme.

L'image est \mathbb{Z} car il est surjectif $(f_1(n,0) = n)$

Le noyau est l'ensemble des couples (a, b) tels que a = b donc il est isomorphe à \mathbb{Z} .

2. Soit $((a,b,c),(d,e,f)) \in (\mathbb{Z}^3)^2$ alors $f_1((a,b,c)+(d,e,f)) = f_1((a+d,b+e,c+f)) = 2^{a+d}3^{b+e}5^{c+f} = 2^a3^b5^c2^d3^e5^f = f_2(a,b,c)f_2(d,e,f)$. Donc il s'agit d'un morphisme.

L'image est l'ensemble des rationnels donc la décomposition en fraction irréductible contient uniquement des 2, 3 et 5 lors de la décomposition.

Le noyau est l'antécédent de 1 donc (0,0,0). Donc le morphisme est injectif.

Exercice 25

Soit a un élément d'un groupe (G, \star) .

- 1. Montrer que l'application $f: k \mapsto a^k$ définit un morphisme du groupe $(\mathbb{Z}, +)$ vers (G, \star) .
- 2. Déterminer l'image et le noyau de f.

Solution

- 1. $\forall (m,n) \in \mathbb{Z}^2, f(m+n) = a^{m+n} = a^m a^n = f(m)f(n)$ donc f est un morphisme.
- 2. L'image est le sous-groupe généré par a. Le noyau est un sous-groupe de $\mathbb Z$ donc de type $n\mathbb Z$

Exercice 26

Soient $n \in \mathbb{N}^*$ et $f : \mathbb{R}^* \to \mathbb{R}^*$ définie par $f(x) = x^n$.

- 1. Montrer que f est un morphisme du groupe (\mathbb{R}^*, \times) dans lui même.
- 2. Déterminer l'image et le novau de f.

Solution

- 1. $\forall (x,y) \in \mathbb{R}^2$, $f(xy) = (xy)^n = x^n y^n = f(x)f(y)$ donc f est un morphisme de groupe.
- 2. Soit $z \in \mathbb{R}_+^*$, alors $z = x^n \Leftrightarrow \ln z = n \ln x$

donc $x=e^{\frac{\ln z}{n}}=z^{\frac{1}{n}}$ est un antécédent de z donc tout élément de \mathbb{R}_+^* , admet un antécédent.

Si n est est pair, $\forall x \in \mathbb{R}^*, x^n \geq 0$, donc l'image par le morphisme est \mathbb{R}_+^* .

Le noyau est $\{-1;1\}$

Si n est impair, soit $z \in \mathbb{R}_{+}^{*}$, alors $-(-z)^{\frac{1}{n}}$ est un antécédent de z donc l'image par le morphisme est \mathbb{R}^{*} . Le noyau est $\{1\}$