	QCM3L Suites de Fonctions Préing2	
\square_1 \square_1 \square_1 \square_1 \square_1 \square_1 \square_1	← codez votre numéro d'étudiant ci-	
	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
\square 7		
	Les cases doivent être complètement noir-	
aaaaaaa	cies avec un stylo NOIR.	
Question 1 ♣		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
converge uniformément sur [1, 2]		
converge uniformément sur [0, 1]		
\square converge uniformément sur $[0, +\infty[$		
\square converge simplement sur $[1, +\infty[$		
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$	
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$	
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_n(x) < \epsilon$	
	$\in A, f_n(x) - f_p(x) < \epsilon$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	as définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
\square converge uniformément sur $\mathbb R$		
converge uniformément sur [1, 2]		
\square converge uniformément sur $]1, +\infty[$		
\square converge uniformément sur $]0, +\infty[$		
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
converge simplement sur [0, 1] vers une fonct	ion constante	
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$		
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$		

	← codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
8888888 99	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
Converge uniformément que 10 Les	
\square converge uniformément sur $]0, +\infty[$	
☐ converge uniformément sur ℝ	
\square converge uniformément sur $]1, +\infty[$	
\square converge uniformément sur $[1,2]$	
Question 2 4	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\square converge uniformément sur $[0,1[$	
\Box converge simplement sur $[1, +\infty[$	
\perp converge uniformement sur $[0, +\infty]$	
\square converge uniformément sur $[0, +\infty[$	
converge uniformément sur $[0, +\infty[$ converge uniformément sur $[1, 2]$	
Converge uniformément sur $[1,2]$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge uniformément sur $[1,2]$	
Converge uniformément sur $[1,2]$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	
Converge uniformément sur $[1,2]$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions Converge simplement sur $[0,1]$ vers une fonctions	
converge uniformément sur $[1,2]$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions converge simplement sur $[0,1]$ vers une fonct converge uniformément sur $[0,a]$ $(a \in]0,1[)$ converge uniformément sur $[a,1]$ $(a \in]0,1[)$	cion constante
converge uniformément sur $[1,2]$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions converge simplement sur $[0,1]$ vers une fonct converge uniformément sur $[0,a]$ $(a \in]0,1[)$ converge uniformément sur $[a,1]$ $(a \in]0,1[)$	
converge uniformément sur $[1,2]$ Question 3 Soit $(f_n)_n$ une suite de fonctions converge simplement sur $[0,1]$ vers une fonct converge uniformément sur $[0,a]$ $(a \in]0,1[)$ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ Question 4 Quel est le critère de Cauchy de	cion constante e convergence uniforme d'une suite de fonctions
Converge uniformément sur $[1,2]$ Question 3 Soit $(f_n)_n$ une suite de fonctions Converge simplement sur $[0,1]$ vers une fonct Converge uniformément sur $[0,a]$ $(a \in]0,1[)$ Converge uniformément sur $[a,1]$ $(a \in]0,1[)$ Question 4 Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	cion constante e convergence uniforme d'une suite de fonctions $>n_0, f_n(x)-f_p(x) <\epsilon$
Converge uniformément sur $[1,2]$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions converge simplement sur $[0,1]$ vers une fonct converge uniformément sur $[0,a]$ $(a \in]0,1[)$ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	tion constante e convergence uniforme d'une suite de fonctions $>n_0, f_n(x)-f_p(x) <\epsilon$ $>n_0, f_n(x)-f_{n_0}(x) <\epsilon$
Converge uniformément sur $[1,2]$ Question 3 Soit $(f_n)_n$ une suite de fonctions converge simplement sur $[0,1]$ vers une fonct converge uniformément sur $[0,a]$ $(a \in]0,1[)$ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ Question 4 Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} : $\forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p$ $\forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p$	cion constante $ > n_0, f_n(x) - f_p(x) < \epsilon $ $ > n_0, f_n(x) - f_{n_0}(x) < \epsilon $ $ > n_0, f_n(x) - f_{n_0}(x) < \epsilon $ $ \in A, f_n(x) - f_p(x) < \epsilon $

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction	ns définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fond	ction constante
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ons définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\Box converge uniformément sur $]1, +\infty[$	
\square converge uniformément sur $\mathbb R$	
\square converge uniformément sur $[1,2]$	
Question 3 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par f_n	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\Box converge simplement sur $[1, +\infty[$	
\square converge uniformément sur $[0,1[$	
\square converge uniformément sur $[1,2]$	
Question 4 \clubsuit Quel est le critère de Cauchy définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	de convergence uniforme d'une suite de fonctions
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p \in \mathbb{N},$	$p > n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x \in \mathbb{N}, n > n_0, p > n_0 \forall x \in \mathbb{N}, n > n_0$	$x \in A, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p \in \mathbb{N}$	$p > n_0, f_n(x) - f_{n_0}(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p \in \mathbb{N}, n$	$p > n_0, f_n(x) - f_p(x) < \epsilon$

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
$\hfill \square$ converge uniformément sur $[a,1]\ (a\in]0,1[)$	
\square converge simplement sur $[0,1]$ vers une fonct	tion constante
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$	
Question 2 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
$\hfill \Box$ converge uniformément sur $[0,+\infty[$	
$\hfill \Box$ converge uniformément sur $[0,1[$	
\square converge uniformément sur $[1,2]$	
\Box converge simplement sur $[1, +\infty[$	
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$\in A, f_n(x) - f_p(x) < \epsilon$
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $\mathbb R$	
$\hfill \Box$ converge uniformément sur]1, $+\infty[$	
\square converge uniformément sur $[1,2]$	
$\hfill \Box$ converge uniform ément sur $]0,+\infty[$	

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Les cases doivent être complètement noir-
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction	cies avec un stylo NOIR. s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
converge uniformément sur $[0, a]$ $(a \in]0, 1[)$ converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$ converge simplement sur $[0, 1]$ vers une fonc	
Question 2 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[0, +\infty[$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
converge uniformément sur $[1,2]$ converge uniformément sur $]1,+\infty[$ converge uniformément sur $]0,+\infty[$ converge uniformément sur \mathbb{R}	
Question 4 \clubsuit Quel est le critère de Cauchy d'définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$0 > n_0, f_n(x) - f_p(x) < \epsilon$

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	tion constante
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $\mathbb R$	
\square converge uniformément sur $]1, +\infty[$	
converge uniformément sur [1, 2]	
\Box converge uniformément sur $]0, +\infty[$	
Question 3 4	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\square converge uniformément sur $[0,1[$	
\square converge simplement sur $[1, +\infty[$	
$\hfill \Box$ converge uniformément sur $[1,2]$	
Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
	$\in A, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$

	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
	Les cases doivent être complètement noir-	
	cies avec un stylo NOIR.	
Question 1 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
converge uniformément sur [1, 2]		
\square converge uniformément sur $[0, +\infty[$		
\square converge uniformément sur $[0,1[$		
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
	$\in A, f_n(x) - f_n(x) < \epsilon$	
	$> n_0, J_n(x) - J_p(x) < \epsilon$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge simplement sur $[0,1]$ vers une fonct	cion constante	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
converge uniformément sur [1, 2]		
\square converge uniformément sur $\mathbb R$		
converge uniformément sur $]0, +\infty[$		
\square converge uniformément sur $]1, +\infty[$		

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
8888888	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$\in A, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
$\hfill \Box$ converge uniformément sur $[0,a] \ (a \in]0,1[)$	
\square converge simplement sur $[0,1]$ vers une fonct	ion constante
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$	
Question 3 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
$\hfill \Box$ converge uniformément sur $[0,1[$	
\square converge uniformément sur $[0, +\infty[$	
\square converge simplement sur $[1, +\infty[$	
\square converge uniformément sur $[1,2]$	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	is définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
$\hfill \Box$ converge uniformément sur $[1,2]$	
$\hfill \Box$ converge uniformément sur $]0,+\infty[$	
$\hfill \Box$ converge uniformément sur $\mathbb R$	
$\hfill \Box$ converge uniformément sur]1, +\infty[

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
Question 2 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
\Box converge simplement sur $[1, +\infty[$		
\Box converge uniformément sur $[0, +\infty[$		
\square converge uniformément sur $[1,2]$ \square converge uniformément sur $[0,1[$		
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
converge simplement sur [0, 1] vers une fonct	tion constante	
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$		

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	← codez votre numéro d'étudiant cicontre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
88888888 9999999	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
☐ converge uniformément sur]1, +∞[☐ converge uniformément sur \mathbb{R} ☐ converge uniformément sur [1, 2] ☐ converge uniformément sur]0, +∞[
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
$ \exists \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x \in A, f_n(x) - f_p(x) < \epsilon $		
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
converge uniformément sur $[0, a]$ $(a \in]0, 1[)$ converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$ converge simplement sur $[0, 1]$ vers une fonction constante		
Question 4 ♣		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	e^{-nx} . Alors, la suite $(f_n)_{n\geqslant 0}$	
$\hfill \Box$ converge uniformément sur $[0,1[$		
\square converge uniformément sur $[1,2]$		
\square converge uniformément sur $[0, +\infty[$		

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $]1, +\infty[$	
\square converge uniformément sur \mathbb{R}	
converge uniformément sur [1, 2]	
\square converge uniformément sur $]0, +\infty[$	
Question 2 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\square converge uniformément sur $[1,2]$	
\Box converge uniformément sur $[0, +\infty[$	
converge uniformément sur [0, 1[
\Box converge simplement sur $[1, +\infty[$	
converge simplement sur [1, 1 ce]	
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$0 > n_0, f_n(x) - f_{n_0}(x) < \epsilon$
	$ f > n_0, f_n(x) - f_p(x) < \epsilon$
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$

	QCM3L Suites de Fonctions Préing2
\square_1 \square_1 \square_1 \square_1 \square_1 \square_1 \square_1	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
$\boxed{5} \boxed{5} \boxed{5} \boxed{5} \boxed{5} \boxed{5} \boxed{5} \boxed{5}$	
\square_7 \square_7 \square_7 \square_7 \square_7 \square_7 \square_7	
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$\in A, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
	$\mathcal{F}(\mathcal{F})$
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $]1, +\infty[$	
\square converge uniformément sur $\mathbb R$	
\square converge uniformément sur $]0, +\infty[$	
converge uniformément sur [1, 2]	
Converge dimormement but [1,2]	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	cion constante
\square converge uniformément sur $[0,a]$ $(a \in]0,1[)$	
\Box converge uniformément sur $[a,1]$ $(a \in]0,1[)$	
Question 4 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
\Box converge simplement sur $[1, +\infty[$	
converge uniformément sur [0, 1]	
\square converge uniformément sur $[0, +\infty[$	
\square converge uniformément sur $[1, 2]$	

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
\square_2 \square_2 \square_2 \square_2 \square_2 \square_2 \square_2 \square_2	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$\in A, f_n(x) - f_n(x) < \epsilon$
	- / J J V J V V V V V
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\Box converge uniformément sur $]1, +\infty[$	
\Box converge uniformément sur $]0, +\infty[$	
converge uniformément sur [1, 2]	
\square converge uniformément sur \mathbb{R}	
converge dimormement sur ax	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	
\square converge simplement sur $[0,1]$ vers une fonct	tion constante
$\hfill \Box$ converge uniformément sur $[a,1]$ $(a\in]0,1[)$	
Question 4 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\square converge uniformément sur $[1,2]$	
\Box converge simplement sur $[1, +\infty[$	
converge uniformément sur [0, 1[
converge uniformément sur $[0, +\infty[$	
converge annormement sur [0, 1 \omega_[

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		
	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_p(x) < \epsilon $		
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
☐ converge uniformément sur $[0, a]$ $(a \in]0, 1[)$ ☐ converge simplement sur $[0, 1]$ vers une fonction constante ☐ converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$		
Question 4 &		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
\square converge uniformément sur $[0,1[$		
\Box converge simplement sur $[1, +\infty[$		
\square converge uniformément sur $[1,2]$		
\Box converge uniformément sur $[0, +\infty[$		

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction	ns définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fond	ction constante
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ons définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $[1,2]$	
\square converge uniformément sur $\mathbb R$	
converge uniformément sur $]1, +\infty[$	
converge uniformément sur $]0, +\infty[$	
Question 3 4	
Soit $(f_n)_n$ une suite de fonctions définies par f_n	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\Box converge simplement sur $[1, +\infty[$	
\square converge uniformément sur $[1,2]$	
\square converge uniformément sur $[0,1[$	
Question 4 \clubsuit Quel est le critère de Cauchy définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	de convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p \in \mathbb{N}, n$	$p > n_0, f_n(x) - f_p(x) < \epsilon$
$ \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p \in \mathbb{N}, n$	$p > n_0, f_n(x) - f_p(x) < \epsilon$
	14 15 ()

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
88888888 9999999	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	* * * * * * * * * * * * * * * * * * * *
	* * * * * * * * * * * * * * * * * * * *
	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
converge simplement sur [0, 1] vers une fonct	ion constante
converge uniformément sur $[0, a]$ $(a \in]0, 1[)$	
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$	
Question 3 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
\Box converge simplement sur $[1, +\infty[$	
\square converge uniformément sur $[1,2]$	
\square converge uniformément sur $[0, +\infty[$	
converge uniformément sur [0, 1]	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	as définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $]1, +\infty[$	
\square converge uniformément sur $]0, +\infty[$	
\square converge uniformément sur $\mathbb R$	
\square converge uniformément sur $[1,2]$	

	QCM3L Suites de Fonctions Préing2
1 1	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom : Les cases doivent être complètement noir- cies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
☐ converge simplement sur $[0,1]$ vers une fonc ☐ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ ☐ converge uniformément sur $[0,a]$ $(a \in]0,1[)$	tion constante
Question 2 &	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
converge uniformément sur $[0,1[$ converge simplement sur $[1,+\infty[$ converge uniformément sur $[1,2]$ converge uniformément sur $[0,+\infty[$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
Question 4 \clubsuit Quel est le critère de Cauchy d définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$ f_{0} > n_{0}, f_{n}(x) - f_{p}(x) < \epsilon$ $ f_{0} > n_{0}, f_{n}(x) - f_{n_{0}}(x) < \epsilon$ $ f_{0} > n_{0}, f_{n}(x) - f_{p}(x) < \epsilon$
	0/1916() 9 b//

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{bmatrix} 5 \\ \hline \end{bmatrix} 5 \begin{bmatrix} 5 \\ \hline \end{bmatrix} 6 \begin{bmatrix} 6 \\ \hline \end{bmatrix} 6 \begin{bmatrix} 6 \\ \hline \end{bmatrix} 6 \begin{bmatrix} 6 \\ \end{bmatrix} 6 \begin{bmatrix} 6$	
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy definie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
	$\in A, f_n(x) - f_p(x) < \epsilon$
Question 2 ♣	
Question 2 4	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge uniformément sur $[1,2]$ converge simplement sur $[1,+\infty[$	$f(x)=nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$ us définies par $f_n(x)=ne^{-n^2x^2}$. Alors, la suite
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge uniformément sur $[1,2]$ converge simplement sur $[1,+\infty[$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge uniformément sur $[1,2]$ converge simplement sur $[1,+\infty[$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge uniformément sur $[1,2]$ converge simplement sur $[1,+\infty[$ Question 3 & Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[0,+\infty[$	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ \square converge uniformément sur $[0,1[$ \square converge uniformément sur $[0,+\infty[$ \square converge uniformément sur $[1,2]$ \square converge simplement sur $[1,+\infty[$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ \square converge uniformément sur $[0,+\infty[$ \square converge uniformément sur $[0,+\infty[$ \square converge uniformément sur $[1,2]$	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge uniformément sur $[1,2]$ converge simplement sur $[1,+\infty[$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[0,+\infty[$ converge uniformément sur $[0,+\infty[$ converge uniformément sur $[1,2]$ converge uniformément sur $[1,2]$ converge uniformément sur $[1,+\infty[$ converge uniformément sur $[1,+\infty[$ converge uniformément sur $[1,+\infty[$	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge uniformément sur $[1,2]$ converge simplement sur $[1,+\infty[$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[0,+\infty[$ converge uniformément sur $[0,+\infty[$ converge uniformément sur $[1,2]$ converge uniformément sur $[1,2]$ converge uniformément sur $[1,+\infty[$ converge uniformément sur $[1,+\infty[$ converge uniformément sur $[1,+\infty[$	ns définies par $f_n(x)=ne^{-n^2x^2}$. Alors, la suite s définies par $f_n(x)=x^n$. Alors, la suite $(f_n)_n$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge uniformément sur $[1,2]$ converge simplement sur $[1,+\infty[$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[0,+\infty[$ converge uniformément sur $[0,+\infty[$ converge uniformément sur $[1,2]$ converge uniformément sur $[1,2]$ converge uniformément sur $[1,+\infty[$	ns définies par $f_n(x)=ne^{-n^2x^2}$. Alors, la suite s définies par $f_n(x)=x^n$. Alors, la suite $(f_n)_n$

L Suites de Fonctions Préing2
codez votre numéro d'étudiant ci- et inscrivez votre nom et prénom us (le NOM d'abord!). et prénom : s doivent être complètement noir-
e un stylo NOIR. $par f_n(x) = x^n. Alors, la suite (f_n)_n$
ante
nx . Alors, la suite $(f_n)_{n\geqslant 0}$
s par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
,
ence uniforme d'une suite de fonctions
$ (x) - f_{n_0}(x) < \epsilon$ $ (x) - f_p(x) < \epsilon$

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!). Nom et prénom :
$\boxed{}4 \ \boxed{}4 \ \boxed{}4 \ \boxed{}4 \ \boxed{}4 \ \boxed{}4 \ \boxed{}4 \ \boxed{}4$	
88888888 9999999	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	-
$ \exists \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x $	$\in A, f_n(x) - f_p(x) < \epsilon$
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$	
converge simplement sur [0, 1] vers une fonct	ion constante
converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
$\hfill \Box$ converge uniformément sur $[1,2]$	
$\hfill \Box$ converge uniformément sur $\mathbb R$	
\Box converge uniformément sur $]0, +\infty[$	
Question 4 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
$\hfill \Box$ converge uniformément sur $[0,+\infty[$	
$\hfill \Box$ converge uniformément sur $[1,2]$	
\square converge uniformément sur $[0,1[$	

	QCM3L Suites de Fonctions Préing2	
	\leftarrow codez votre numéro d'étudiant ci-	
	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!). Nom et prénom :	
$\boxed{}4$ $\boxed{}4$ $\boxed{}4$ $\boxed{}4$ $\boxed{}4$ $\boxed{}4$ $\boxed{}4$	Tom co prenom.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	Les cases doivent être complètement noircies avec un stylo NOIR.	
	cies avec un stylo NOIIt.	
Question 1 &		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
\square converge uniformément sur $[0,1[$		
\square converge uniformément sur $[0, +\infty[$		
\square converge uniformément sur $[1,2]$		
\Box converge simplement sur $[1, +\infty[$		
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_p(x) < \epsilon $		
	-	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge simplement sur $[0,1]$ vers une fonct	cion constante	
Converge uniformément sur $[a,1]$ $(a\in]0,1[)$		
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
\Box converge uniformément sur $]1, +\infty[$		
\square converge uniformément sur $\mathbb R$		
converge uniformément sur [1, 2]		
converge uniformément sur $]0, +\infty[$		

	QCM3L Suites de Fonctions Préing2	
	onder vetre numéro d'étudient ei	
	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
	T 1 1 1 A A A A A A A A A A A A A A A A	
	Les cases doivent être complètement noircies avec un stylo NOIR.	
	cles avec an soylo recirc.	
Question 1 &		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
\Box converge uniformément sur $[0, +\infty[$		
converge uniformément sur [0, 1]		
converge uniformément sur [1, 2]		
\square converge simplement sur $[1, +\infty[$		
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
\square converge uniformément sur $]1, +\infty[$		
\square converge uniformément sur \mathbb{R}		
converge uniformément sur $]0, +\infty[$		
converge uniformément sur [1, 2]		
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge simplement sur $[0,1]$ vers une fonct	cion constante	
Question 4 & Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
$ \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x $	$\in A, f_n(x) - f_p(x) < \epsilon$	
	-	
	~ -0 ; $ Ju(w) - Jp(w) \sim -0$	

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$\in A, f_n(x) - f_p(x) < \epsilon$
$ \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_n(x) < \epsilon$
	• • • • • • • • • • • • • • • • • • • •
	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
converge simplement sur [0, 1] vers une fonct	ion constante
converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	s définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $]1, +\infty[$	
\square converge uniformément sur $\mathbb R$	
converge uniformément sur [1, 2]	
\square converge uniformément sur $]0, +\infty[$	
Ougstion 4.	
Question 4 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\square converge uniformément sur $[1,2]$	
\Box converge simplement sur $[1, +\infty[$	
$\hfill \Box$ converge uniformément sur $[0,1[$	

0 0	CM3L Suites de Fonctions Préing2 ← codez votre numéro d'étudiant cicontre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom : Les cases doivent être complètement noircies avec un stylo NOIR.
☐ converge uniformément sur $[0, a]$ $(a \in]0, 1[)$ ☐ converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$ ☐ converge simplement sur $[0, 1]$ vers une fonc	
Question 2 Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[1,2]$ converge uniformément sur $]0,+\infty[$ converge uniformément sur \mathbb{R} converge uniformément sur $]1,+\infty[$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
Question 4 \clubsuit Quel est le critère de Cauchy définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$ $> n_0, f_n(x) - f_p(x) < \epsilon$ $> n_0, f_n(x) - f_p(x) < \epsilon$

	QCM3L Suites de Fonctions Préing2
1 1	← codez votre numéro d'étudiant cicontre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom : Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$	ion constante
\square converge simplement sur $[0,1]$ vers une fonct	ion constante
Question 2 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\square converge uniformément sur $[1,2]$	
\square converge uniformément sur $[0, +\infty[$	
converge uniformément sur [0, 1]	
\square converge simplement sur $[1, +\infty[$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\Box converge uniformément sur $]0, +\infty[$	
$\hfill \square$ converge uniformément sur $[1,2]$	
$\hfill \square$ converge uniformément sur $\mathbb R$	
\Box converge uniformément sur $]1, +\infty[$	
Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
$ \exists \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x $	$\in A, f_n(x) - f_p(x) < \epsilon$

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 4	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
\square converge uniformément sur $[0, +\infty[$	
\square converge uniformément sur $[1,2]$	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $]0, +\infty[$	
converge uniformément sur [1, 2]	
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge uniformément sur $[a,1]$ $(a\in]0,1[)$	
\square converge simplement sur $[0,1]$ vers une fonct	tion constante

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
$\square 2 \square 2$	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
converge uniformément sur [0, 1[
converge uniformément sur $[0, +\infty[$	
converge uniformément sur [1, 2]	
Converge simplement sur [1, 1 oc	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	cion constante
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\Box converge uniformément sur $]0, +\infty[$	
$\hfill \Box$ converge uniformément sur $\mathbb R$	
\square converge uniformément sur]1, $+\infty$ [
\square converge uniformément sur $[1,2]$	

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
666666666 77777777 88888888		
	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
Question 2	e convergence uniforme d'une suite de fonctions	
Question 3 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
☐ converge uniformément sur $[0,1[$ ☐ converge uniformément sur $[1,2]$ ☐ converge simplement sur $[1,+\infty[$ ☐ converge uniformément sur $[0,+\infty[$		
	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
☐ converge simplement sur $[0,1]$ vers une fonct ☐ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ ☐ converge uniformément sur $[0,a]$ $(a \in]0,1[)$		

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
8888888	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[0, +\infty[$ ☐ converge uniformément sur $[1, 2]$		
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
$\hfill \Box$ converge uniformément sur $\mathbb R$		
converge uniformément sur [1, 2]		
\square converge uniformément sur $]1, +\infty[$		
\square converge uniformément sur $]0, +\infty[$		
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	s définies par $f_n(x) = f_p(x) \in \mathcal{E}$	
☐ converge uniformément sur $[0, a]$ $(a \in]0, 1[)$ ☐ converge simplement sur $[0, 1]$ vers une fonce ☐ converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$	tion constante	

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
5555555	
	I as assas daireant âtre committement noin
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	tion constante
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
$\hfill \square$ converge uniformément sur $\mathbb R$	
\square converge uniformément sur $]0, +\infty[$	
$\hfill \Box$ converge uniformément sur $[1,2]$	
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x $	$\in A, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
Question 4 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\Box converge simplement sur $[1, +\infty[$	
converge uniformément sur [1, 2]	
converge uniformément sur [0, 1]	

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci-	
	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
	Les cases doivent être complètement noir-	
	cies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
\square converge uniformément sur $]1, +\infty[$		
converge uniformément sur [1, 2]		
☐ converge uniformément sur ℝ		
Converge uniformement sur M		
Question 2 ♣		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
\square converge uniformément sur $[1,2]$		
\Box converge uniformément sur $[0, +\infty[$		
\Box converge simplement sur $[1, +\infty[$		
converge uniformément sur [0, 1[
	.6 12 .4 1 6 4	
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$	
$ \exists x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_p(x) < \epsilon $		
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$		
converge uniformément sur $[0, a]$ $(a \in]0, 1[)$ converge simplement sur $[0, 1]$ vers une fonct		

0 0	QCM3L Suites de Fonctions Préing2 ← codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :
	Les cases doivent être complètement noir- cies avec un stylo NOIR. e convergence uniforme d'une suite de fonctions
définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	$\in A, f_n(x) - f_p(x) < \epsilon$ $> n_0, f_n(x) - f_p(x) < \epsilon$ $> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
Question 2 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge uniformément sur $[1,2]$ converge simplement sur $[1,+\infty[$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
converge uniformément sur $[0,a]$ $(a \in]0,1[)$ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ converge simplement sur $[0,1]$ vers une fonc	tion constante
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
<u></u>	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
8888888 99	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy d'définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x $	$\in A, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$0 > n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
Question 2 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[0, +\infty[$	$f(x)=nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$ une définies par $f_n(x)=ne^{-n^2x^2}$. Alors, la suite
☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[0, +\infty[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction	
☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[0, +\infty[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	
☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[0, +\infty[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ ☐ converge uniformément sur \mathbb{R}	
☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[0, +\infty[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ ☐ converge uniformément sur \mathbb{R} ☐ converge uniformément sur $[1, 2]$	
☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[0, +\infty[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ ☐ converge uniformément sur \mathbb{R} ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[1, +\infty[$ ☐ converge uniformément sur $[1, +\infty[$	
☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[0, +\infty[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ ☐ converge uniformément sur \mathbb{R} ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[1, +\infty[$ ☐ converge uniformément sur $[1, +\infty[$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[0, +\infty[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ ☐ converge uniformément sur \mathbb{R} ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[1, +\infty[$ ☐ Question 4 ♣ Soit $(f_n)_n$ une suite de fonction	ns définies par $f_n(x)=ne^{-n^2x^2}$. Alors, la suite s définies par $f_n(x)=x^n$. Alors, la suite $(f_n)_n$

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{bmatrix} 5 \\ \hline \end{bmatrix} 5 \begin{bmatrix} 5 \\ \hline \end{bmatrix} 6 \begin{bmatrix} 6 \\ \hline \end{bmatrix} 6 \begin{bmatrix} 6 \\ \hline \end{bmatrix} 6 \begin{bmatrix} 6 \\ \end{bmatrix} 6 \begin{bmatrix} 6$	
888888 99	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$\in A, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	cion constante
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
$\hfill \Box$ converge uniformément sur $\mathbb R$	
\square converge uniformément sur $[1,2]$	
\Box converge uniformément sur $]0, +\infty[$	
Question 4 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\square converge simplement sur $[1, +\infty[$	
\square converge uniformément sur $[1,2]$	
$\hfill \Box$ converge uniformément sur $[0,+\infty[$	
$\hfill \Box$ converge uniformément sur $[0,1[$	

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nom et prénom :
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
	tion constante
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_p(x) < \epsilon$
Question 4 ♣	\mathcal{L}_{-2}
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\square converge simplement sur $[1, +\infty[$	
converge uniformément sur [0, 1]	
converge uniformément sur [1, 2]	
\square converge uniformément sur $[0, +\infty[$	

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	← codez votre numéro d'étudiant cicontre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
converge uniformément sur $[0,a]$ $(a \in]0,1[)$ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ converge simplement sur $[0,1]$ vers une fonct	ion constante
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$\in A, f_n(x) - f_p(x) < \epsilon$
	• • • • •
	• • • • • • • • • • • • • • • • • • • •
	$> n_0, f_n(x) - f_p(x) < \epsilon$
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
converge uniformément sur [1, 2]	
\square converge uniformément sur $\mathbb R$	
$\hfill \Box$ converge uniformément sur $]1,+\infty[$	
Question 4 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\square converge uniformément sur $[0,1[$	
\square converge uniformément sur $[0, +\infty[$	
$\hfill \Box$ converge uniformément sur $[1,2]$	
\Box converge simplement sur $[1, +\infty[$	

□0 □0 □0 □0 □0 □0 □0 □0 □0 □0 □0	
□3 □3 □3 □3 □3 □3 □3 □ Nom et prénom : □4 □4 □4 □4 □4 □4 □4 4	
Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Quel est le critère de Cauchy de convergence uniforme d'une suite de fonct définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	ions
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_p(x) < \epsilon $	
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_{n_0}(x) < \epsilon $	
$ \exists \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_p(x) < \epsilon $	
$ \exists \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_p(x) < \epsilon $	
Question 2 \$\\\$ Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la s $(f_n)_n$	suite
\square converge uniformément sur $\mathbb R$	
\square converge uniformément sur $[1,2]$	
\square converge uniformément sur $]1, +\infty[$	
$\ $ converge uniformément sur $]0,+\infty[$	
Question 3 &	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
\square converge uniformément sur $[0, +\infty[$	
\Box converge simplement sur $[1, +\infty[$	
\square converge uniformément sur $[1,2]$	
\square converge uniformément sur $[0,1[$	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	$_n)_n$
\square converge uniformément sur $[0,a]$ $(a \in]0,1[)$	
\square converge simplement sur $[0,1]$ vers une fonction constante	

	QCM3L Suites de Fonctions Préing2	
	\leftarrow codez votre numéro d'étudiant ci-	
	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!). Nom et prénom :	
	Les cases doivent être complètement noir-	
	cies avec un stylo NOIR.	
Question 1 ♣		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
\Box converge simplement sur $[1, +\infty[$		
converge uniformément sur $[0, +\infty[$		
\square converge uniformément sur $[1,2]$		
\square converge uniformément sur $[0,1[$		
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\Box converge uniformément sur $[a,1]$ $(a \in]0,1[)$		
\square converge simplement sur $[0,1]$ vers une fonct	tion constante	
Converge uniformément sur $[0,a]$ $(a\in]0,1[)$		
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$	
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$	
	$\in A, f_n(x) - f_p(x) < \epsilon$	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
\square converge uniformément sur $[1,2]$		
$\hfill \Box$ converge uniformément sur $\mathbb R$		
$\hfill \Box$ converge uniformément sur $]0,+\infty[$		
\square converge uniformément sur $]1, +\infty[$		

0 0	QCM3L Suites de Fonctions Préing2 ← codez votre numéro d'étudiant cicontre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom : Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
☐ converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$ ☐ converge uniformément sur $[0, a]$ $(a \in]0, 1[)$ ☐ converge simplement sur $[0, 1]$ vers une fonc	tion constante
Question 2 Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n/x}$. Alors, la suite
Question 3 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
☐ converge uniformément sur $[0, +\infty[$ ☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[0, 1[$	
Question $4 \clubsuit$ Quel est le critère de Cauchy d' définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$ f_0 > n_0, f_n(x) - f_p(x) < \epsilon$ $ f_0 > n_0, f_n(x) - f_p(x) < \epsilon$ $ f_0 > n_0, f_n(x) - f_{n_0}(x) < \epsilon$

	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci-	
	contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
8888888	Les cases doivent être complètement noir-	
	cies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
converge simplement sur [0,1] vers une fonct	tion constante	
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$		
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
	$\in A, f_n(x) - f_p(x) < \epsilon$	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
converge uniformément sur [1, 2]		
\square converge uniformément sur $]1, +\infty[$		
\square converge uniformément sur $\mathbb R$		
$\hfill \Box$ converge uniformément sur $]0,+\infty[$		
Question 4 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
\square converge simplement sur $[1, +\infty[$		
\square converge uniformément sur $[1,2]$		
\square converge uniformément sur $[0,1[$		
\square converge uniformément sur $[0, +\infty[$		

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	Les cases doivent être complètement noir-	
	cies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	is définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
Question 3 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
$\hfill \Box$ converge uniformément sur $[0,+\infty[$		
$\hfill \Box$ converge uniformément sur $[1,2]$		
\square converge simplement sur $[1, +\infty[$		
\square converge uniformément sur $[0,1[$		
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge simplement sur $[0,1]$ vers une fonct	ion constante	
\square converge uniformément sur $[0,a]$ $(a \in]0,1[)$		

	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
\square 7		
	T	
	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 &		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
\square converge uniformément sur $[0, +\infty[$		
converge uniformément sur [0, 1]		
\square converge uniformément sur $[1,2]$		
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$		
\square converge simplement sur $[0,1]$ vers une fonct	tion constante	
	2. 2	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
\Box converge uniformément sur $]1, +\infty[$		
\Box converge uniformément sur $[1,2]$		
\square converge uniformément sur \mathbb{R}		
converge uniformément sur $]0, +\infty[$		
converge uniformement sur jo, † ∞[
Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
	$ > n_0, f_n(x) - f_{n_0}(x) < \epsilon $	
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $		
	$> n_0, J_n(x) - J_p(x) < \epsilon$	

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).	
$ \begin{bmatrix} 3 \\ \end{bmatrix} 3 $	Nom et prénom :	
$ \begin{bmatrix} 5 \\ \hline \end{bmatrix} 5 \begin{bmatrix} 5 \\ \hline \end{bmatrix} 6 \begin{bmatrix} 6 \\ \hline \end{bmatrix} 6 \begin{bmatrix} 6 \\ \hline \end{bmatrix} 6 \begin{bmatrix} 6 \\ \end{bmatrix} 6 \begin{bmatrix} 6 \\ $		
	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_{n_0}(x) < \epsilon $		
$ \exists \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_p(x) < \epsilon $		
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge simplement sur $[0,1]$ vers une fonct	tion constante	
Question 4 &		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
$\hfill \Box$ converge uniformément sur $[0,+\infty[$		
\square converge simplement sur $[1, +\infty[$		
$\hfill \Box$ converge uniformément sur $[1,2]$		
\square converge uniformément sur $[0,1[$		

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Les cases doivent être complètement noir-
9999999 Question 1 ♣	cies avec un stylo NOIR.
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$r = nre^{-nx}$ Alors la suite $(f_n)_{n>0}$
converge uniformément sur $[1,2]$ converge uniformément sur $[0,1[$ converge simplement sur $[1,+\infty[$ converge uniformément sur $[0,+\infty[$	$f = nac$. Proofs, in sum $(f_n)_{n\geqslant 0}$
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
☐ converge simplement sur $[0,1]$ vers une fonce ☐ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ ☐ converge uniformément sur $[0,a]$ $(a \in]0,1[)$	tion constante
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_p(x) < \epsilon$ $> n_0, f_n(x) - f_p(x) < \epsilon$ $> n_0, f_n(x) - f_p(x) < \epsilon$
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
converge uniformément sur [1, 2]	

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
8888888	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
☐ converge uniformément sur \mathbb{R} ☐ converge uniformément sur $]1, +\infty[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $]0, +\infty[$	
Question 2 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
\square converge uniformément sur $[1,2]$	
$\hfill \Box$ converge uniformément sur $[0,+\infty[$	
$\hfill \Box$ converge uniformément sur $[0,1[$	
\square converge simplement sur $[1, +\infty[$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	tion constante
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$	
Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$\in A, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_{n_0}(x) < \epsilon $	

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
	Les cases doivent être complètement noircies avec un stylo NOIR.
	•
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$\in A, f_n(x) - f_p(x) < \epsilon$
Question 2 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
converge uniformément sur [1, 2]	
☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐	
converge simplement sur $[1, +\infty[$ converge uniformément sur $[0, 1[$ converge uniformément sur $[0, +\infty[$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
converge simplement sur $[1, +\infty[$ converge uniformément sur $[0, 1[$ converge uniformément sur $[0, +\infty[$ Question 3 & Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
converge simplement sur $[1, +\infty[$ converge uniformément sur $[0, 1[$ converge uniformément sur $[0, +\infty[$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
converge simplement sur $[1, +\infty[$ converge uniformément sur $[0, 1[$ converge uniformément sur $[0, +\infty[$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[1, +\infty[$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
converge simplement sur $[1, +\infty[$ converge uniformément sur $[0, 1[$ converge uniformément sur $[0, +\infty[$ Question 3 & Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[1, +\infty[$ converge uniformément sur $[1, 2]$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
□ converge simplement sur $[1, +\infty[$ □ converge uniformément sur $[0, 1[$ □ converge uniformément sur $[0, +\infty[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ □ converge uniformément sur $[1, +\infty[$ □ converge uniformément sur $[1, 2]$ □ converge uniformément sur \mathbb{R} □ converge uniformément sur $[0, +\infty[$	ns définies par $f_n(x)=ne^{-n^2x^2}$. Alors, la suite s définies par $f_n(x)=x^n$. Alors, la suite $(f_n)_n$
converge simplement sur $[1, +\infty[$ converge uniformément sur $[0, 1[$ converge uniformément sur $[0, +\infty[$ Question 3 & Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[1, +\infty[$ converge uniformément sur $[1, 2]$ converge uniformément sur \mathbb{R} converge uniformément sur $[0, +\infty[$ Question 4 & Soit $(f_n)_n$ une suite de fonctions	
□ converge simplement sur $[1, +\infty[$ □ converge uniformément sur $[0, 1[$ □ converge uniformément sur $[0, +\infty[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ □ converge uniformément sur $[1, +\infty[$ □ converge uniformément sur $[1, 2]$ □ converge uniformément sur \mathbb{R} □ converge uniformément sur $[0, +\infty[$ Question 4 ♣ Soit $(f_n)_n$ une suite de fonctions $[0, a]$ converge uniformément sur $[0, a]$ $[0, a]$ $[0, a]$ $[0, a]$	
converge simplement sur $[1, +\infty[$ converge uniformément sur $[0, 1[$ converge uniformément sur $[0, +\infty[$ Question 3 & Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[1, +\infty[$ converge uniformément sur $[1, 2]$ converge uniformément sur \mathbb{R} converge uniformément sur $[0, +\infty[$ Question 4 & Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci-	
	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
$\boxed{5} \boxed{5} \boxed{5} \boxed{5} \boxed{5} \boxed{5} \boxed{5} \boxed{5}$		
7777777		
	Les cases doivent être complètement noir-	
	cies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite $(f_n)_n$		
converge uniformément sur $]0, +\infty[$		
☐ converge uniformément sur ℝ		
converge uniformément sur [1, 2]		
\square converge uniformément sur $]1, +\infty[$		
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$		
converge simplement sur [0, 1] vers une fonc	tion constante	
converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$		
\square converge uniformement sur $[a,1]$ $(a \in]0,1[)$		
Question 3 \clubsuit Quel est le critère de Cauchy de convergence uniforme d'une suite de fonctions définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :		
	$0 > n_0, f_n(x) - f_p(x) < \epsilon$	
$ \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x \in A, f_n(x) - f_p(x) < \epsilon $		
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_p(x) < \epsilon $		
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $		
Question 4 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
converge uniformément sur $[0, +\infty[$		
converge uniformément sur [0, 1]		
\square converge uniformément sur $[1,2]$		

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	← codez votre numéro d'étudiant cicontre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :
$\ \ \ \ \ \ \ \ \ \ \ \ \ $	
8888888	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$\in A, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
converge uniformément sur [1, 2]	
converge uniformément sur ℝ	
\square converge uniformément sur $]0, +\infty[$	
$\hfill \Box$ converge uniformément sur $]1,+\infty[$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	cion constante
Question 4 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
$\hfill \Box$ converge uniformément sur $[0,1[$	
\Box converge uniformément sur $[0, +\infty[$	
converge annormement but [0, 1 oc	

	QCM3L Suites de Fonctions Préing2
1 1	← codez votre numéro d'étudiant cicontre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom : Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
Question 2 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
\Box converge simplement sur $[1, +\infty[$	
converge uniformément sur [1, 2]	
converge uniformément sur [0, 1]	
_	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
converge simplement sur [0, 1] vers une fonct	tion constante
converge uniformément sur $[0, a]$ $(a \in]0, 1[)$ converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$	
	e convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x $	$\in A, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_p(x) < \epsilon $	

	QCM3L Suites de Fonctions Préing2	
1 1	← codez votre numéro d'étudiant cicontre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(r) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
☐ converge uniformément sur $[1,2]$ ☐ converge simplement sur $[1,+\infty[$ ☐ converge uniformément sur $[0,1[$ ☐ converge uniformément sur $[0,+\infty[$		
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
	• • • • •	
	$\in A, f_n(x) - f_p(x) < \epsilon$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
converge simplement sur $[0,1]$ vers une fonct converge uniformément sur $[a,1]$ $(a \in]0,1[)$	cion constante	
converge uniformément sur $[a, 1]$ ($a \in]0, 1[$) converge uniformément sur $[0, a]$ ($a \in]0, 1[$)		
	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
$\hfill \Box$ converge uniformément sur $]0,+\infty[$		
\square converge uniformément sur $[1,2]$		
☐ converge uniformément sur ℝ		
\square converge uniformément sur $]1, +\infty[$		

0 0	QCM3L Suites de Fonctions Préing2 ← codez votre numéro d'étudiant cicontre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom : Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonctions \Box converge simplement sur $[0,1]$ vers une fonct \Box converge uniformément sur $[a,1]$ $(a \in]0,1[)$ \Box converge uniformément sur $[0,a]$ $(a \in]0,1[)$	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[1,2]$ converge uniformément sur \mathbb{R} converge uniformément sur $]0,+\infty[$ converge uniformément sur $]1,+\infty[$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	$> n_0, f_n(x) - f_p(x) < \epsilon$ $> n_0, f_n(x) - f_p(x) < \epsilon$ $> n_0, f_n(x) - f_p(x) < \epsilon$
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[1,2]$	

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
\square 7	
	T 12 12 12 12 12 12 12 12 12 12 12 12 12
	Les cases doivent être complètement noircies avec un stylo NOIR.
	cles avec un stylo ivont.
Question 1 4	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
converge uniformément sur $[0, +\infty[$	
converge uniformément sur [0, 1[
\square converge uniformément sur $[1,2]$	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $]1, +\infty[$	
converge uniformément sur $]0, +\infty[$	
\square converge uniformément sur $\mathbb R$	
converge uniformément sur [1, 2]	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonc	tion constante
Question 4 \clubsuit Quel est le critère de Cauchy d'définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$\forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p$	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
	* * * * * * * * * * * * * * * * * * * *
	$> n_s \mid f(x) = f(x) \mid < \epsilon$

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
$\ \ \ \ \ \ \ \ \ \ \ \ \ $	
888888 99	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 &	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\square converge uniformément sur $[0, +\infty[$	
\square converge simplement sur $[1, +\infty[$	
\square converge uniformément sur $[1,2]$ \square converge uniformément sur $[0,1[$	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $]0, +\infty[$	
$\hfill \Box$ converge uniformément sur $[1,2]$	
☐ converge uniformément sur ℝ	
\square converge uniformément sur $]1, +\infty[$	
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
converge simplement sur [0, 1] vers une fonct	tion constante
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$	

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	tion constante
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$	
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$	
Question 2 &	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\Box converge uniformément sur $[0, +\infty[$	
\Box converge simplement sur $[1, +\infty[$	
converge uniformément sur [0, 1]	
converge uniformément sur [1,2]	
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $]0,+\infty[$	
converge uniformément sur [1,2]	
converge uniformément sur \mathbb{R}	
converge uniformément sur $]1, +\infty[$	

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!). Nom et prénom :
$\boxed{}4$ $\boxed{}4$ $\boxed{}4$ $\boxed{}4$ $\boxed{}4$ $\boxed{}4$ $\boxed{}4$	Nom et prenom .
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	tion constante
$\hfill \Box$ converge uniformément sur $[a,1]\ (a\in]0,1[)$	
$\hfill \Box$ converge uniformément sur $[0,a]\ (a\in]0,1[)$	
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
	$\in A, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_n(x) < \epsilon$
	_
Question 3 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$x = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
converge uniformément sur [0, 1]	
converge uniformément sur [1, 2]	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $[1,2]$	
$\hfill \Box$ converge uniformément sur $]0,+\infty[$	
\square converge uniformément sur $\mathbb R$	
$\hfill \Box$ converge uniformément sur]1, +\infty[

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{bmatrix} 5 \\ \hline \end{bmatrix} 5 \begin{bmatrix} 5 \\ \end{bmatrix} 5 \begin{bmatrix} 5 \\ $	
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy definie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
	$\in A, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction	$-m^2\pi^2$
$(f_n)_n$ and suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
	ns définies par $f_n(x) = ne^{-n/x}$. Alors, la suite
$(f_n)_n$	ns définies par $f_n(x) = ne^{-n/x}$. Alors, la suite
$(f_n)_n$	ns définies par $f_n(x) = ne^{-n/x}$. Alors, la suite
$(f_n)_n$	ns définies par $f_n(x) = ne^{-n/x}$. Alors, la suite
$(f_n)_n$ \square converge uniformément sur $]1, +\infty[$ \square converge uniformément sur $]0, +\infty[$ \square converge uniformément sur \mathbb{R}	ns définies par $f_n(x) = ne^{-n/x}$. Alors, la suite
$(f_n)_n$ \square converge uniformément sur $]1, +\infty[$ \square converge uniformément sur $]0, +\infty[$ \square converge uniformément sur \mathbb{R} \square converge uniformément sur $[1, 2]$	
$(f_n)_n$ \square converge uniformément sur $]1, +\infty[$ \square converge uniformément sur $]0, +\infty[$ \square converge uniformément sur \mathbb{R} \square converge uniformément sur $[1, 2]$ Question 3 \clubsuit	
$(f_n)_n$ \square converge uniformément sur $]1, +\infty[$ \square converge uniformément sur $]0, +\infty[$ \square converge uniformément sur \mathbb{R} \square converge uniformément sur $[1, 2]$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	
$(f_n)_n$ \square converge uniformément sur $]1, +\infty[$ \square converge uniformément sur $]0, +\infty[$ \square converge uniformément sur \mathbb{R} \square converge uniformément sur $[1,2]$ Question $3 \clubsuit$ Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ \square converge uniformément sur $[0, +\infty[$	
$(f_n)_n$ \square converge uniformément sur $]1, +\infty[$ \square converge uniformément sur $]0, +\infty[$ \square converge uniformément sur \mathbb{R} \square converge uniformément sur $[1, 2]$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ \square converge uniformément sur $[0, +\infty[$ \square converge simplement sur $[1, +\infty[$	
$(f_n)_n$ \square converge uniformément sur $]1, +\infty[$ \square converge uniformément sur $]0, +\infty[$ \square converge uniformément sur $]1, 2]$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ \square converge uniformément sur $[0, +\infty[$ \square converge simplement sur $[1, +\infty[$ \square converge uniformément sur $[1, 2]$ \square converge uniformément sur $[0, 1[$	
$(f_n)_n$ \square converge uniformément sur $]1, +\infty[$ \square converge uniformément sur $]0, +\infty[$ \square converge uniformément sur $]1, 2]$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ \square converge uniformément sur $[0, +\infty[$ \square converge simplement sur $[1, +\infty[$ \square converge uniformément sur $[1, 2]$ \square converge uniformément sur $[0, 1[$	$f(x)=nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$ s définies par $f_n(x)=x^n$. Alors, la suite $(f_n)_n$
$(f_n)_n$ \square converge uniformément sur $]1, +\infty[$ \square converge uniformément sur $]0, +\infty[$ \square converge uniformément sur \mathbb{R} \square converge uniformément sur $[1, 2]$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ \square converge uniformément sur $[0, +\infty[$ \square converge simplement sur $[1, +\infty[$ \square converge uniformément sur $[1, 2]$ \square converge uniformément sur $[0, 1[$ Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction	$f(x)=nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$ s définies par $f_n(x)=x^n$. Alors, la suite $(f_n)_n$

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
	T J.:
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
\square converge uniformément sur $[1,2]$	
\Box converge simplement sur $[1, +\infty[$	
$\hfill \Box$ converge uniformément sur $[0,1[$	
converge uniformément sur $[0, +\infty[$	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonc	tion constante
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$\in A, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
converge uniformément sur $]1, +\infty[$	
converge uniformément sur [1, 2]	
$\hfill \Box$ converge uniformément sur $]0,+\infty[$	
$\hfill \Box$ converge uniformément sur $\mathbb R$	

	Suites de Fonctions Préing2	
2 2	dez votre numéro d'étudiant ci- inscrivez votre nom et prénom (le NOM d'abord!). prénom : doivent être complètement noir- in stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies $(f_n)_n$	par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
Question 2 \clubsuit Quel est le critère de Cauchy de convergen définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	ce uniforme d'une suite de fonctions	
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) $	$) - f_p(x) < \epsilon$	
	$ -f_p(x) <\epsilon$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies pa	ar $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
	ute	
Question 4 ♣		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
☐ converge uniformément sur $[0, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[1, 2]$		

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	← codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
$\ \ \ \ \ \ \ \ \ \ \ \ \ $		
8888888 99	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 &		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(r) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[1, 2]$		
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$\in A, f_n(x) - f_p(x) < \epsilon$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\Box converge uniformément sur $[a,1]$ $(a \in]0,1[)$		
\square converge simplement sur $[0,1]$ vers une fonct	cion constante	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
$\hfill \Box$ converge uniformément sur $]1,+\infty[$		
\square converge uniformément sur $\mathbb R$		
\square converge uniformément sur $]0, +\infty[$		
\square converge uniformément sur $[1,2]$		

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :
	Les cases doivent être complètement noir-
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	cies avec un stylo NOIR. as définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
converge uniformément sur \mathbb{R} converge uniformément sur $[1,2]$ converge uniformément sur $]0,+\infty[$ converge uniformément sur $]1,+\infty[$	
Question 2 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ \square converge uniformément sur $[0, +\infty[$ \square converge uniformément sur $[1, 2]$ \square converge simplement sur $[1, +\infty[$ \square converge uniformément sur $[0, 1[$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
☐ converge simplement sur $[0,1]$ vers une fonce ☐ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ ☐ converge uniformément sur $[0,a]$ $(a \in]0,1[)$	tion constante
Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$ $> n_0, f_n(x) - f_p(x) < \epsilon$ $\in A, f_n(x) - f_p(x) < \epsilon$
, - ,, F C - 1,, P	~, ψ (ψ () ψ P ()

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\Box converge uniformément sur $]0, +\infty[$	
\square converge uniformément sur \mathbb{R}	
converge uniformément sur [1, 2]	
\square converge uniformément sur $]1, +\infty[$	
Question 2 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$r(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
\Box converge simplement sur $[1, +\infty[$	
converge uniformément sur [1, 2]	
\square converge uniformément sur $[0,1[$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	tion constante
converge uniformément sur $[0, a]$ $(a \in]0, 1[)$	
\square converge uniformement sur $[0,a]$ $(a \in]0,1[)$	
Converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$ Converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$	
	e convergence uniforme d'une suite de fonctions
	e convergence uniforme d'une suite de fonctions
converge uniformément sur $[a,1]$ $(a \in]0,1[)$ Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	
converge uniformément sur $[a,1]$ $(a \in]0,1[)$ Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	$> n_0, f_n(x) - f_p(x) < \epsilon$
converge uniformément sur $[a,1]$ $(a \in]0,1[)$ Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	$ > n_0, f_n(x) - f_p(x) < \epsilon $ $ > n_0, f_n(x) - f_p(x) < \epsilon $
converge uniformément sur $[a,1]$ $(a \in]0,1[)$ Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} : $ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $ $ \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $ $ \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x $	$ > n_0, f_n(x) - f_p(x) < \epsilon $ $ > n_0, f_n(x) - f_p(x) < \epsilon $ $ \in A, f_n(x) - f_p(x) < \epsilon $
converge uniformément sur $[a,1]$ $(a \in]0,1[)$ Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	$> n_0, f_n(x) - f_p(x) < \epsilon$ $> n_0, f_n(x) - f_p(x) < \epsilon$ $\in A, f_n(x) - f_p(x) < \epsilon$ $> n_0, f_n(x) - f_p(x) < \epsilon$

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!). Nom et prénom :
	Nom et prenom .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	T 1
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 • Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	convergence uniforme d'une suite de fonctions $ \in A, f_n(x) - f_n(x) < \epsilon $
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	** * * * * * * * * * * * * * * * * *
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions $(f_n)_n$	s définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
$\hfill \square$ converge uniformément sur $\mathbb R$	
\square converge uniformément sur $[1,2]$	
\Box converge uniformément sur $]0, +\infty[$	
Question 3 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
\square converge uniformément sur $[0, +\infty[$	
converge uniformément sur [0,1[
\square converge simplement sur $[1, +\infty[$	
$\hfill \square$ converge uniformément sur $[1,2]$	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions	définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
$\hfill \square$ converge uniformément sur $[a,1]\ (a\in]0,1[)$	
\square converge simplement sur $[0,1]$ vers une foncti	ion constante

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\Box converge uniformément sur $]1, +\infty[$	
\square converge uniformément sur \mathbb{R}	
converge uniformément sur [1, 2]	
\square converge uniformément sur $]0, +\infty[$	
Question 2 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
converge uniformément sur [0, 1[
converge uniformément sur [1, 2]	
\square converge uniformément sur $[0, +\infty[$	
\square converge simplement sur $[1, +\infty[$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	tion constante
	a convergence uniforme d'une quite de fenetiene
Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	$> n_0, f_n(x) - f_p(x) < \epsilon$
définie sur $A\subset\mathbb{R}$ à valeurs dans \mathbb{R} :	$> n_0, f_n(x) - f_p(x) < \epsilon$ $> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	$> n_0, f_n(x) - f_p(x) < \epsilon$ $> n_0, f_n(x) - f_{n_0}(x) < \epsilon$ $> n_0, f_n(x) - f_p(x) < \epsilon$
définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	$> n_0, f_n(x) - f_p(x) < \epsilon$ $> n_0, f_n(x) - f_{n_0}(x) < \epsilon$ $> n_0, f_n(x) - f_p(x) < \epsilon$ $\in A, f_n(x) - f_p(x) < \epsilon$

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	← codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 &	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(r) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\square converge uniformément sur $[1,2]$	
\square converge simplement sur $[1, +\infty[$	
☐ converge uniformément sur $[0, +\infty[$ ☐ converge uniformément sur $[0, 1[$	
	e convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	• • • • •
	• • • • • • • • • • • • • • • • • • • •
	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
converge uniformément sur $[0, a]$ $(a \in]0, 1[)$	ian constants
converge simplement sur $[0,1]$ vers une fonct converge uniformément sur $[a,1]$ $(a \in]0,1[)$	non constante
	$-n^2r^2$
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $]1, +\infty[$	
converge uniformément sur [1, 2]	

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$\in A, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $[1,2]$	
$\hfill \Box$ converge uniformément sur $]1,+\infty[$	
$\hfill \Box$ converge uniformément sur $\mathbb R$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	tion constante
\square converge uniformément sur $[0,a]$ $(a \in]0,1[)$	
Question 4 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
$\hfill \Box$ converge uniform ément sur $[0,+\infty[$	
\square converge uniformément sur $[1,2]$	
$\hfill \Box$ converge uniformément sur $[0,1[$	
\Box converge simplement sur $[1, +\infty[$	

0 0	QCM3L Suites de Fonctions Préing2 ← codez votre numéro d'étudiant cicontre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom : Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
converge uniformément sur $[a,1]$ $(a \in]0,1[)$ converge simplement sur $[0,1]$ vers une fonction constante converge uniformément sur $[0,a]$ $(a \in]0,1[)$		
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
Question 3 \clubsuit Quel est le critère de Cauchy définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$ \begin{aligned} &\epsilon A, f_n(x) - f_p(x) < \epsilon \\ &> n_0, f_n(x) - f_p(x) < \epsilon \\ &> n_0, f_n(x) - f_p(x) < \epsilon \end{aligned} $	
Question 4 ♣		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
converge uniformément sur $[0, +\infty[$ converge simplement sur $[1, +\infty[$ converge uniformément sur $[0, 1[$ converge uniformément sur $[1, 2]$		

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0 QCM3L Suit	es de Fonctions Préing2
	otre numéro d'étudiant ci-
	rivez votre nom et prénom
□3 □3 □3 □3 □3 □3 □3 □ ci-dessous (le N Nom et prén	·
555555	
	nt être complètement noir- lo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f(f_n)_n$	$n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $]1, +\infty[$	
converge uniformément sur [1, 2]	
\square converge uniformément sur $]0, +\infty[$	
\square converge uniformément sur \mathbb{R}	
_	, , , , , , , , , , , , , , , , , , , ,
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par f_n	$(x) = x^n$. Alors, la suite $(f_n)_n$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
Question 3 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x) = nxe^{-nx}$. Al	ors la suite $(f_*)_{*>0}$
	(fn/n) = 0
\square converge simplement sur $[1, +\infty[$	
converge uniformément sur $ [0, +\infty[$	
converge uniformément sur [0, 1[
\square converge uniformément sur $[1,2]$	
Question 4 \clubsuit Quel est le critère de Cauchy de convergence un définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	iforme d'une suite de fonctions
	$ x < \epsilon$
	$ p(x) < \epsilon$
	$ p(x) < \epsilon$

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!). Nom et prénom :
$\boxed{}4$ $\boxed{}4$ $\boxed{}4$ $\boxed{}4$ $\boxed{}4$ $\boxed{}4$ $\boxed{}4$	Nom et prenom .
555555	
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $\mathbb R$	
\Box converge uniformément sur $]0, +\infty[$	
\Box converge uniformément sur $]1, +\infty[$	
\square converge uniformément sur $[1,2]$	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
$\hfill \Box$ converge uniformément sur $[0,a]\ (a\in]0,1[)$	
\square converge simplement sur $[0,1]$ vers une fonct	tion constante
$\hfill \Box$ converge uniformément sur $[a,1]$ $(a\in]0,1[)$	
Question 3 4	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
\square converge simplement sur $[1, +\infty[$	
$\hfill \Box$ converge uniformément sur $[0,1[$	
\square converge uniformément sur $[1,2]$	
$\hfill \Box$ converge uniformément sur $[0,+\infty[$	
Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
	$\in A, f_n(x) - f_p(x) < \epsilon$

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
	I	
	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
\square converge uniformément sur $[0,1[$		
converge uniformément sur [1, 2]		
	e convergence uniforme d'une suite de fonctions	
	$\in A, f_n(x) - f_p(x) < \epsilon$	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
$\hfill \Box$ converge uniformément sur $]1,+\infty[$		
\square converge uniformément sur $\mathbb R$		
\square converge uniformément sur $[1,2]$		
\square converge uniformément sur $]0, +\infty[$		
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
converge simplement sur [0, 1] vers une fonct	tion constante	
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$		

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	← codez votre numéro d'étudiant cicontre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
8888888 9999999	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$> n_0, J_n(x) - J_p(x) < \epsilon$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
☐ converge uniformément sur $[0, a]$ $(a \in]0, 1[)$ ☐ converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$		
converge simplement sur [0, 1] vers une fonct	ion constante	
Question 4 ♣		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
$\hfill \Box$ converge uniformément sur $[1,2]$		
\square converge uniformément sur $[0,1[$		
\square converge simplement sur $[1, +\infty[$		
\square converge uniformément sur $[0, +\infty[$		

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci-	
	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
	Les cases doivent être complètement noircies avec un stylo NOIR.	
	cles avec un stylo NOIIt.	
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$> n_0, f_n(x) - f_n(x) < \epsilon$	
	$\in A, f_n(x) - f_p(x) < \epsilon$	
Question 2 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	e^{-nx} . Alors, la suite $(f_n)_{n\geqslant 0}$	
converge uniformément sur [1, 2]		
converge uniformément sur [0, 1]		
\square converge uniformément sur $[0, +\infty[$		
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions \Box converge uniformément sur $[a,1]$ $(a \in]0,1[)$	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
_		
☐ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ ☐ converge simplement sur $[0,1]$ vers une fonct ☐ converge uniformément sur $[0,a]$ $(a \in]0,1[)$		
□ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ □ converge simplement sur $[0,1]$ vers une fonct □ converge uniformément sur $[0,a]$ $(a \in]0,1[)$ Question 4 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	tion constante	
□ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ □ converge simplement sur $[0,1]$ vers une fonct □ converge uniformément sur $[0,a]$ $(a \in]0,1[)$ Question 4 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ □ converge uniformément sur \mathbb{R}	tion constante	
□ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ □ converge simplement sur $[0,1]$ vers une fonct □ converge uniformément sur $[0,a]$ $(a \in]0,1[)$ Question 4 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ □ converge uniformément sur \mathbb{R} □ converge uniformément sur $[1,2]$	tion constante	
□ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ □ converge simplement sur $[0,1]$ vers une fonct □ converge uniformément sur $[0,a]$ $(a \in]0,1[)$ Question 4 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ □ converge uniformément sur \mathbb{R}	tion constante	

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	← codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nom et prénom :	
$\ \ \ \ \ \ \ \ \ \ \ \ \ $		
\square 7		
	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
	$\in A, f_n(x) - f_p(x) < \epsilon$	
$ \exists \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_p(x) < \epsilon $		
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$	
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
\square converge uniformément sur $]1, +\infty[$		
\square converge uniformément sur $[1,2]$		
\square converge uniformément sur $\mathbb R$		
\Box converge uniformément sur $]0, +\infty[$		
Question 3 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
$\hfill \Box$ converge uniformément sur $[1,2]$		
$\hfill \Box$ converge uniformément sur $[0,1[$		
$\hfill \Box$ converge uniformément sur $[0,+\infty[$		
\Box converge simplement sur $[1, +\infty[$		
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge simplement sur $[0,1]$ vers une fonce	tion constante	

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
\square_2 \square_2 \square_2 \square_2 \square_2 \square_2 \square_2 \square_2	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
	T. In the state of
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
$ \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x $	$\in A, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
Question 2 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0, +\infty[$	$x(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\Box converge uniformément sur $[0, +\infty[$	e^{-nx} . Alors, la suite $(f_n)_{n\geqslant 0}$
	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
☐ converge uniformément sur $[0, +\infty[$ ☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[1, 2]$ ☐	$e(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
	e^{-nx} . Alors, la suite $(f_n)_{n\geqslant 0}$
☐ converge uniformément sur $[0, +\infty[$ ☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[0, 1[$	$f(x)=nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$ s' définies par $f_n(x)=x^n$. Alors, la suite $(f_n)_n$
☐ converge uniformément sur $[0, +\infty[$ ☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[0, 1[$	
☐ converge uniformément sur $[0, +\infty[$ ☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[0, 1[$ ☐ Question 3 ♣ Soit $(f_n)_n$ une suite de fonctions	
☐ converge uniformément sur $[0, +\infty[$ ☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[0, 1[$ ☐ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction ☐ converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
□ converge uniformément sur $[0, +\infty[$ □ converge simplement sur $[1, +\infty[$ □ converge uniformément sur $[1, 2]$ □ converge uniformément sur $[0, 1[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction $[0, 1]$ □ converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$ □ converge uniformément sur $[0, a]$ $(a \in]0, 1[)$ □ converge simplement sur $[0, 1]$ vers une fonction $[0, 1]$	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
□ converge uniformément sur $[0, +\infty[$ □ converge simplement sur $[1, +\infty[$ □ converge uniformément sur $[1, 2]$ □ converge uniformément sur $[0, 1[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction $[a, 1]$ $[a \in]0, 1[)$ □ converge uniformément sur $[a, 1]$ $[a \in]0, 1[)$ □ converge uniformément sur $[0, a]$ $[a \in]0, 1[)$ □ converge simplement sur $[0, 1]$ vers une fonction $[a, 1]$ vers une	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$ tion constante
□ converge uniformément sur $[0, +\infty[$ □ converge simplement sur $[1, +\infty[$ □ converge uniformément sur $[1, 2]$ □ converge uniformément sur $[0, 1[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction □ converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$ □ converge uniformément sur $[0, a]$ $(a \in]0, 1[)$ □ converge simplement sur $[0, 1]$ vers une fonct $[a, 1]$ vers une fonct $[a, 1]$ vers une fonct $[a, 1]$ vers une suite de fonction $[a, 1]$	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$ tion constante
□ converge uniformément sur $[0, +\infty[$ □ converge simplement sur $[1, +\infty[$ □ converge uniformément sur $[1, 2]$ □ converge uniformément sur $[0, 1[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction $[0, a]$ ($a \in]0, 1[$) □ converge uniformément sur $[0, a]$ ($a \in]0, 1[$) □ converge uniformément sur $[0, a]$ ($a \in]0, 1[$) □ converge simplement sur $[0, 1]$ vers une fonction $[f_n]_n$ □ converge uniformément sur $[1, 2]$ □ converge uniformément sur $[1, 2]$ □ converge uniformément sur $[1, 2]$	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$ tion constante
□ converge uniformément sur $[0, +\infty[$ □ converge simplement sur $[1, +\infty[$ □ converge uniformément sur $[1, 2]$ □ converge uniformément sur $[0, 1[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction $[a, 1]$ $[a \in]0, 1[)$ □ converge uniformément sur $[a, 1]$ $[a \in]0, 1[)$ □ converge uniformément sur $[0, a]$ $[a \in]0, 1[)$ □ converge simplement sur $[0, 1]$ vers une fonct $[a, 1]$ $[a \in]0, 1[)$ □ converge simplement sur $[a, 1]$ $[a \in]0, 1[)$ □ converge simplement sur $[a, 1]$ $[a \in]0, 1[)$ □ converge uniformément sur $[a, 1]$ $[a \in]0, 1[)$ □ converge uniformément sur $[a, 1]$ $[a \in]0, 1[)$ □ converge uniformément sur $[a, 1]$ $[a \in]0, 1[)$ □ converge uniformément sur $[a, 1]$ $[a \in]0, 1[)$	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$ tion constante

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
8888888	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$\in A, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	ion constante
$\hfill \Box$ converge uniformément sur $[0,a]\ (a\in]0,1[)$	
Question 3 &	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
$\hfill \Box$ converge uniformément sur $[1,2]$	
$\hfill \Box$ converge uniformément sur $[0,+\infty[$	
\Box converge simplement sur $[1, +\infty[$	
\square converge uniformément sur $[0,1[$	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	is définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $]1, +\infty[$	
\square converge uniformément sur $]0, +\infty[$	
converge uniformément sur [1, 2]	
\square converge uniformément sur \mathbb{R}	

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
8 8 8 8 8 8 8	T J-:
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
$ \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x $	$\in A, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
Question 2 ♣	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$x(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0, +\infty[$ converge uniformément sur $[1, 2]$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0, +\infty[$ converge uniformément sur $[1, 2]$ converge uniformément sur $[0, 1[$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0, +\infty[$ converge uniformément sur $[1, 2]$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0, +\infty[$ converge uniformément sur $[1, 2]$ converge uniformément sur $[0, 1[$ converge simplement sur $[1, +\infty[$	$f(x)=nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$ us définies par $f_n(x)=ne^{-n^2x^2}$. Alors, la suite
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0, +\infty[$ converge uniformément sur $[1, 2]$ converge uniformément sur $[0, 1[$ converge simplement sur $[1, +\infty[$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0, +\infty[$ converge uniformément sur $[1, 2]$ converge uniformément sur $[0, 1[$ converge simplement sur $[1, +\infty[$ Question $3 \clubsuit$ Soit $(f_n)_n$ une suite de fonction	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0, +\infty[$ converge uniformément sur $[1, 2]$ converge uniformément sur $[0, 1[$ converge simplement sur $[1, +\infty[$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[0, +\infty[$	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0, +\infty[$ converge uniformément sur $[1, 2]$ converge uniformément sur $[0, 1[$ converge simplement sur $[1, +\infty[$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[0, +\infty[$	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0, +\infty[$ converge uniformément sur $[1, 2]$ converge uniformément sur $[0, 1[$ converge simplement sur $[1, +\infty[$ Question $3 \clubsuit$ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[0, +\infty[$ converge uniformément sur $[1, 2]$ converge uniformément sur $[1, 2]$ converge uniformément sur $[1, 2]$ converge uniformément sur $[1, +\infty[$	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0, +\infty[$ converge uniformément sur $[1, 2]$ converge uniformément sur $[0, 1[$ converge simplement sur $[1, +\infty[$ Question $3 \clubsuit$ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[0, +\infty[$ converge uniformément sur $[1, 2]$ converge uniformément sur $[1, 2]$ converge uniformément sur $[1, 2]$ converge uniformément sur $[1, +\infty[$	ns définies par $f_n(x)=ne^{-n^2x^2}$. Alors, la suite s définies par $f_n(x)=x^n$. Alors, la suite $(f_n)_n$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0, +\infty[$ converge uniformément sur $[1, 2]$ converge uniformément sur $[0, 1[$ converge simplement sur $[1, +\infty[$ Question $3 \clubsuit$ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[1, 2]$ converge uniformément sur $[1, +\infty[$ Question $[1, 2]$ Soit $[1, 2]$ une suite de fonction converge simplement sur $[0, 1]$ vers une fonction converge simplement sur $[0, 1]$ vers une fonction converge simplement sur $[0, 1]$ vers une fonction $[1, 2]$ converge simplement sur $[0, 1]$ vers une fonction $[1, 2]$ converge simplement sur $[0, 1]$ vers une fonction $[1, 2]$ converge simplement sur $[0, 1]$ vers une fonction $[1, 2]$ converge simplement sur $[0, 1]$ vers une fonction $[1, 2]$ converge simplement sur $[0, 1]$ vers une fonction $[1, 2]$ converge simplement sur $[0, 1]$ vers une fonction $[1, 2]$ converge simplement sur $[0, 1]$ vers une fonction $[1, 2]$ converge simplement sur $[0, 1]$ vers une fonction $[1, 2]$ converge simplement sur $[0, 1]$ vers une fonction $[1, 2]$ converge simplement sur $[0, 1]$ vers une fonction $[1, 2]$ converge simplement sur $[1, 2]$	ns définies par $f_n(x)=ne^{-n^2x^2}$. Alors, la suite s définies par $f_n(x)=x^n$. Alors, la suite $(f_n)_n$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0, +\infty[$ converge uniformément sur $[1, 2]$ converge uniformément sur $[0, 1[$ converge simplement sur $[1, +\infty[$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[0, +\infty[$ converge uniformément sur $[1, 2]$ converge uniformément sur \mathbb{R} converge uniformément sur $[1, +\infty[$ Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction	ns définies par $f_n(x)=ne^{-n^2x^2}$. Alors, la suite s définies par $f_n(x)=x^n$. Alors, la suite $(f_n)_n$

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
$\square 2 \square 2$	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
converge uniformément sur [1,2]	
converge uniformément sur $[0, +\infty[$	
\square converge uniformément sur $[0,1[$	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonc	tion constante
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$r > n_0, f_n(x) - f_{n_0}(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\bigcirc converge uniformément sur $]0, +\infty[$	
\square converge uniformément sur $]1, +\infty[$	
converge uniformément sur [1, 2]	
converge dimormement sur [1, 2]	

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
\square 7	
<u>8</u>	I sa sagag deivent ŝtre complètement nein
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x $	$\in A, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
Question 2 ♣	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[1,2]$ converge uniformément sur $[0,+\infty[$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[1,2]$ converge uniformément sur $[0,+\infty[$ converge uniformément sur $[0,1[$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[1,2]$ converge uniformément sur $[0,+\infty[$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[1,2]$ converge uniformément sur $[0,+\infty[$ converge uniformément sur $[0,1[$ converge simplement sur $[1,+\infty[$	$f(x)=nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$ us définies par $f_n(x)=ne^{-n^2x^2}$. Alors, la suite
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[1,2]$ converge uniformément sur $[0,+\infty[$ converge uniformément sur $[0,1[$ converge simplement sur $[1,+\infty[$ Question 3 Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[1,2]$ converge uniformément sur $[0,+\infty[$ converge uniformément sur $[0,1[$ converge simplement sur $[1,+\infty[$ Question 3 Soit $(f_n)_n$ une suite de fonction	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ \square converge uniformément sur $[1,2]$ \square converge uniformément sur $[0,+\infty[$ \square converge uniformément sur $[0,1[$ \square converge simplement sur $[1,+\infty[$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ \square converge uniformément sur $[1,+\infty[$ \square converge uniformément sur $[1,2]$	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[1,2]$ converge uniformément sur $[0,+\infty[$ converge uniformément sur $[0,1[$ converge simplement sur $[1,+\infty[$ Question 3 & Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[1,+\infty[$	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[1,2]$ converge uniformément sur $[0,+\infty[$ converge uniformément sur $[0,1[$ converge simplement sur $[1,+\infty[$ Question $3 \clubsuit$ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[1,+\infty[$ converge uniformément sur $[1,2]$	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[1,2]$ converge uniformément sur $[0,+\infty[$ converge uniformément sur $[0,1[$ converge simplement sur $[1,+\infty[$ Question $3 \clubsuit$ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[1,+\infty[$ converge uniformément sur $[1,2]$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[1,2]$ converge uniformément sur $[0,+\infty[$ converge uniformément sur $[0,1[$ converge simplement sur $[1,+\infty[$ Question $3 \clubsuit$ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[1,+\infty[$ converge uniformément sur $[1,2]$ converge uniformément sur $[1,2]$ converge uniformément sur $[0,+\infty[$ Question $\{a,b\}$ Soit $\{a,b\}$ une suite de fonction converge uniformément sur $[0,a]$ $\{a,b\}$ Soit $\{a,b\}$ une suite de fonction converge uniformément sur $[0,a]$ $\{a,b\}$ Soit $\{a,$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[1,2]$ converge uniformément sur $[0,+\infty[$ converge uniformément sur $[0,1[$ converge simplement sur $[1,+\infty[$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[1,+\infty[$ converge uniformément sur $[1,2]$ converge uniformément sur \mathbb{R} converge uniformément sur $[0,+\infty[$ Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction	ns définies par $f_n(x)=ne^{-n^2x^2}$. Alors, la suite s définies par $f_n(x)=x^n$. Alors, la suite $(f_n)_n$

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{bmatrix} 6 \\ \hline 6 \end{bmatrix} \begin{bmatrix} 6 \\ \hline \end{bmatrix} \begin{bmatrix} 6 \\ \end{bmatrix} \begin{bmatrix}$	
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\Box converge simplement sur $[1, +\infty[$	
converge uniformément sur [0, 1]	
\Box converge uniformément sur $[0, +\infty[$	
converge uniformément sur [1, 2]	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge uniformément sur $[0,a]$ $(a \in]0,1[)$	
converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$	
\square converge simplement sur $[0,1]$ vers une fonct	cion constante
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
converge uniformément sur [1, 2]	
\Box converge uniformément sur]1, $+\infty$ [
converge uniformément sur R	
\square converge uniformément sur $]0, +\infty[$	
Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
	* * * * * * * * * * * * * * * * * * * *

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$	
\Box converge simplement sur $[0,1]$ vers une fonct	tion constante
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$	
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
	* * * * * * * * * * * * * * * * * * * *
	* * * * * * * * * * * * * * * * * * * *
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\Box converge uniformément sur $]0, +\infty[$	
\square converge uniformément sur \mathbb{R}	
\square converge uniformément sur $]1, +\infty[$	
converge uniformément sur [1, 2]	
Question 4 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
\square converge uniformément sur $[0,1[$	
\square converge uniformément sur $[0, +\infty[$	
\square converge simplement sur $[1, +\infty[$	
converge uniformément sur [1, 2]	

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{bmatrix} 5 \\ \hline \end{bmatrix} 5 \begin{bmatrix} 5 \\ \hline \end{bmatrix} 6 \begin{bmatrix} 6 \\ \end{bmatrix} 6 \begin{bmatrix} 6$	
888888 99	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$\in A, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $[1,2]$	
$\hfill \Box$ converge uniformément sur $\mathbb R$	
Question 3 &	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
\square converge simplement sur $[1, +\infty[$	
$\hfill \Box$ converge uniformément sur $[0,1[$	
$\hfill \Box$ converge uniformément sur $[1,2]$	
\Box converge uniformément sur $[0, +\infty[$	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	tion constante

	QCM3L Suites de Fonctions Préing2 ← codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy d'définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	de convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$0 > n_0, f_n(x) - f_p(x) < \epsilon$
	$0 > n_0, f_n(x) - f_p(x) < \epsilon$
	* * * * * * * * * * * * * * * * * * * *
	$c \in A, f_n(x) - f_p(x) < \epsilon$
Question 2 &	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$r = nxe^{-nx}$ Alors la suite $(f_n)_{n>0}$
(9.0).0	$(J_n)_{n\geqslant 0}$
	$f = h \omega c$. There, in state $(f n) n \geqslant 0$
\square converge uniformément sur $[1,2]$	f(f) = f(f) = f(f) . Therefore $f(f) = f(f) = f(f)$
	$y = n\omega c$. There, in state $(fn)n\geqslant 0$
☐ converge uniformément sur $[1, 2]$ ☐ converge simplement sur $[1, +\infty[$	$(f_n)_{n\geqslant 0}$
☐ converge uniformément sur $[1, 2]$ ☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[0, +\infty[$	as définies par $f_n(x)=x^n$. Alors, la suite $(f_n)_n$
☐ converge uniformément sur $[1, 2]$ ☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[0, +\infty[$	ns définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
☐ converge uniformément sur $[1, 2]$ ☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[0, +\infty[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction	ns définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
□ converge uniformément sur $[1, 2]$ □ converge simplement sur $[1, +\infty[$ □ converge uniformément sur $[0, 1[$ □ converge uniformément sur $[0, +\infty[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction □ converge simplement sur $[0, 1]$ vers une fonc	ns définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
□ converge uniformément sur $[1, 2]$ □ converge simplement sur $[1, +\infty[$ □ converge uniformément sur $[0, 1[$ □ converge uniformément sur $[0, +\infty[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction □ converge simplement sur $[0, 1]$ vers une fonction □ converge uniformément sur $[0, a]$ $(a \in]0, 1[)$ □ converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$	ns définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
□ converge uniformément sur $[1, 2]$ □ converge simplement sur $[1, +\infty[$ □ converge uniformément sur $[0, 1[$ □ converge uniformément sur $[0, +\infty[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction □ converge simplement sur $[0, 1]$ vers une fonc □ converge uniformément sur $[0, a]$ $(a \in]0, 1[)$ □ converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$ Question 4 ♣ Soit $(f_n)_n$ une suite de fonction	ns définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$ etion constante
□ converge uniformément sur $[1, 2]$ □ converge simplement sur $[1, +\infty[$ □ converge uniformément sur $[0, 1[$ □ converge uniformément sur $[0, +\infty[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction □ converge simplement sur $[0, 1]$ vers une fonc □ converge uniformément sur $[0, a]$ $(a \in]0, 1[)$ □ converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$ Question 4 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$ etion constante
□ converge uniformément sur $[1, 2]$ □ converge simplement sur $[1, +\infty[$ □ converge uniformément sur $[0, 1[$ □ converge uniformément sur $[0, +\infty[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction □ converge simplement sur $[0, 1]$ vers une fonction □ converge uniformément sur $[0, a]$ $(a \in]0, 1[)$ □ converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$ Question 4 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ □ converge uniformément sur $[0, +\infty[$	ns définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$ etion constante

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\Box converge uniformément sur $[0, +\infty[$	
converge uniformément sur [1, 2]	
converge uniformément sur [0, 1]	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	as définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\Box converge uniformément sur $]0, +\infty[$	
converge uniformément sur [1, 2]	
\square converge uniformément sur $]1, +\infty[$	
\square converge uniformément sur \mathbb{R}	
_	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	ion constante
$\hfill \Box$ converge uniformément sur $[0,a]$ $(a\in]0,1[)$	
Question 4 & Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
$\square 2 \square 2$	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!). Nom et prénom :
88888888 9999999	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
$ \exists \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	ion constante
$\hfill \square$ converge uniformément sur $[a,1]$ $(a\in]0,1[)$	
$\hfill \Box$ converge uniformément sur $[0,a]\ (a\in]0,1[)$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	as définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $\mathbb R$	
$\hfill \Box$ converge uniformément sur $[1,2]$	
\square converge uniformément sur $]0, +\infty[$	
\square converge uniformément sur $]1, +\infty[$	
Question 4 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
$\hfill \Box$ converge uniformément sur $[0,+\infty[$	
\square converge uniformément sur $[1,2]$	
\square converge uniformément sur $[0,1[$	

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	T 10 10 10 10 10 10 10 10 10 10 10 10 10
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 &	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	e^{-nx} . Alors, la suite $(f_n)_{n\geqslant 0}$
converge uniformément sur [0, 1[
converge uniformément sur $[0, +\infty[$	
\Box converge simplement sur $[1, +\infty[$	
converge uniformément sur [1, 2]	
Converge dimormement but [1,2]	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $\mathbb R$	
\square converge uniformément sur $]1, +\infty[$	
converge uniformément sur [1, 2]	
\square converge uniformément sur $]0, +\infty[$	
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\Box converge uniformément sur $[a,1]$ $(a \in]0,1[)$	
converge uniformément sur $[0, a]$ $(a \in]0, 1[)$	
converge simplement sur $[0, 1]$ vers une fonct	tion constants
converge amplement our [0, 1] vers une fonct	JOH COHSUMIUC

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
8888888899	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$	
converge uniformément sur $[0, a]$ $(a \in]0, 1[)$	
converge simplement sur $[0,1]$ vers une fonc	tion constante
	tion constante
Question 2 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
\square converge uniformément sur $[0,1[$	
\Box converge uniformément sur $[0, +\infty[$	
\Box converge simplement sur $[1, +\infty[$	
converge uniformément sur [1, 2]	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $\mathbb R$	
\Box converge uniformément sur $]0, +\infty[$	
\Box converge uniformément sur $]1,+\infty[$	
converge uniformément sur [1, 2]	
Question 4 \clubsuit Quel est le critère de Cauchy de léfinie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$0 > n_0, f_n(x) - f_p(x) < \epsilon$

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci-	
	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
	Les cases doivent être complètement noir-	
	cies avec un stylo NOIR.	
Question 1 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
\Box converge simplement sur $[1, +\infty[$		
\square converge uniformément sur $[1,2]$		
converge uniformément sur $[0, +\infty]$		
converge uniformément sur [0, 1]		
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
$ \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_p(x) < \epsilon $		
	* * * * * * * * * * * * * * * * * * * *	
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	* * * * * * * * * * * * * * * * * * * *	
	* * * * * * * * * * * * * * * * * * * *	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite $(f_n)_n$		
\Box converge uniformément sur $]0, +\infty[$		
converge uniformément sur [1, 2]		
\square converge uniformément sur \mathbb{R}		
\square converge uniformément sur $]1, +\infty[$		
	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$		
converge simplement sur [0, 1] vers une fonct	ion constante	
converge uniformément sur $[0, a]$ $(a \in]0, 1[)$		

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	← codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).	
$\square 3 \square 3$	Nom et prénom :	
	Les cases doivent être complètement noir-	
	cies avec un stylo NOIR.	
Question 1 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
$\hfill \Box$ converge uniformément sur $[0,+\infty[$		
\square converge uniformément sur $[0,1[$		
converge uniformément sur [1, 2]		
\Box converge simplement sur $[1, +\infty[$		
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
$\hfill \Box$ converge uniformément sur $[a,1]\ (a\in]0,1[)$		
\square converge simplement sur $[0,1]$ vers une fonct	ion constante	
Question 3 \clubsuit Quel est le critère de Cauchy de convergence uniforme d'une suite de fonctions définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :		
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$	
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_{n_0}(x) < \epsilon $		
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite $(f_n)_n$		
\square converge uniformément sur $]1, +\infty[$		
converge uniformément sur [1, 2]		
\square converge uniformément sur $]0, +\infty[$		
\square converge uniformément sur \mathbb{R}		

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 &		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
\square converge uniformément sur $[0, +\infty[$		
converge uniformément sur [0,1[
\square converge simplement sur $[1, +\infty[$		
converge uniformément sur [1,2]		
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$\in A, f_n(x) - f_p(x) < \epsilon$	
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_{n_0}(x) < \epsilon $		
	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge simplement sur $[0,1]$ vers une fonction constante		
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$		
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
converge uniformément sur [1, 2]		
\square converge uniformément sur $]0, +\infty[$		
$\hfill \square$ converge uniformément sur $\mathbb R$		
$\hfill \Box$ converge uniformément sur]1, +\infty[

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	← codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{bmatrix} 5 \\ \hline \end{bmatrix} 5 \begin{bmatrix} 5 \\ \hline \end{bmatrix} 6 \begin{bmatrix} 6 \\ \hline \end{bmatrix} 6 \begin{bmatrix} 6 \\ \hline \end{bmatrix} 6 \begin{bmatrix} 6 \\ \end{bmatrix} 6 \begin{bmatrix} 6$	
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy definie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$\in A, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
Question 2 ♣	
•	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge simplement sur $[1, +\infty[$ converge uniformément sur $[0, 1[$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge simplement sur $[1, +\infty[$ converge uniformément sur $[0, 1[$ converge uniformément sur $[0, +\infty[$ converge uniformément sur $[1, 2]$	$f(x)=nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$ has définies par $f_n(x)=ne^{-n^2x^2}$. Alors, la suite
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge simplement sur $[1, +\infty[$ converge uniformément sur $[0, 1[$ converge uniformément sur $[0, +\infty[$ converge uniformément sur $[1, 2]$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(a)$ converge simplement sur $[1, +\infty[$ converge uniformément sur $[0, 1[$ converge uniformément sur $[0, +\infty[$ converge uniformément sur $[1, 2]$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge simplement sur $[1, +\infty[$ converge uniformément sur $[0, 1[$ converge uniformément sur $[0, +\infty[$ converge uniformément sur $[1, 2]$ Question $3 \clubsuit$ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[0, +\infty[$	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ \square converge simplement sur $[1, +\infty[$ \square converge uniformément sur $[0, 1[$ \square converge uniformément sur $[0, +\infty[$ \square converge uniformément sur $[1, 2]$ \square Question $3 \clubsuit$ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ \square converge uniformément sur $[0, +\infty[$	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ \square converge simplement sur $[1, +\infty[$ \square converge uniformément sur $[0, 1[$ \square converge uniformément sur $[0, +\infty[$ \square converge uniformément sur $[1, 2]$ \square Question 3 \square Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ \square converge uniformément sur $[0, +\infty[$ \square converge uniformément sur $[1, +\infty[$ \square converge uniformément sur $[1, 2]$ \square converge uniformément sur $[1, 2]$ \square converge uniformément sur $[1, 2]$	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ \square converge simplement sur $[1, +\infty[$ \square converge uniformément sur $[0, 1[$ \square converge uniformément sur $[0, +\infty[$ \square converge uniformément sur $[1, 2]$ \square Question 3 \square Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ \square converge uniformément sur $[0, +\infty[$ \square converge uniformément sur $[1, +\infty[$ \square converge uniformément sur $[1, 2]$ \square converge uniformément sur $[1, 2]$ \square converge uniformément sur $[1, 2]$	ns définies par $f_n(x)=ne^{-n^2x^2}$. Alors, la suite s définies par $f_n(x)=x^n$. Alors, la suite $(f_n)_n$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge simplement sur $[1, +\infty[$ converge uniformément sur $[0, 1[$ converge uniformément sur $[0, +\infty[$ converge uniformément sur $[1, 2]$ Question $3 \clubsuit$ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[0, +\infty[$ converge uniformément sur $[0, +\infty[$ converge uniformément sur $[1, 2]$ converge uniformément sur $[1, $	ns définies par $f_n(x)=ne^{-n^2x^2}$. Alors, la suite s définies par $f_n(x)=x^n$. Alors, la suite $(f_n)_n$

0 0	QCM3L Suites de Fonctions Préing2 ← codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :	
$9 9 9 9 9 9 9$ Question 1 Soit $(f_n)_n$ une suite de fonctions	Les cases doivent être complètement noircies avec un stylo NOIR. s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
Question 2 ♣		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$ \begin{aligned} &\in A, f_n(x) - f_p(x) < \epsilon \\ &> n_0, f_n(x) - f_p(x) < \epsilon \\ &> n_0, f_n(x) - f_p(x) < \epsilon \end{aligned} $	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
☐ converge uniformément sur \mathbb{R} ☐ converge uniformément sur $]1, +\infty[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $]0, +\infty[$		

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	← codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
\square_4 \square_4 \square_4 \square_4 \square_4 \square_4 \square_4	Trom or promon	
$\ \ \ \ \ \ \ \ \ \ \ \ \ $		
	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	is définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
☐ converge uniformément sur \mathbb{R} ☐ converge uniformément sur $]1, +\infty[$ ☐ converge uniformément sur $]0, +\infty[$ ☐ converge uniformément sur $[1, 2]$		
Question 2 \clubsuit Quel est le critère de Cauchy de convergence uniforme d'une suite de fonctions définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :		
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$		
$\hfill \Box$ converge uniformément sur $[a,1]\ (a\in]0,1[)$		
\square converge simplement sur $[0,1]$ vers une fonct	ion constante	
\square converge uniformément sur $[0,a]$ $(a \in]0,1[)$		
Question 4 ♣		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
$\hfill \Box$ converge uniformément sur $[1,2]$		
\square converge uniformément sur $[0,1[$		
\square converge uniformément sur $[0, +\infty[$		
\square converge simplement sur $[1, +\infty[$		

	QCM3L Suites de Fonctions Préing2		
	← codez votre numéro d'étudiant ci-		
	contre, et inscrivez votre nom et prénom		
	ci-dessous (le NOM d'abord!).		
	Nom et prénom :		
\square 7			
	T		
	Les cases doivent être complètement noircies avec un stylo NOIR.		
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$		
\square converge simplement sur $[0,1]$ vers une fonct	tion constante		
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite		
$\hfill \square$ converge uniformément sur $\mathbb R$			
$\hfill \Box$ converge uniformément sur $[1,2]$			
\square converge uniformément sur $]1,+\infty[$			
Question 3 \clubsuit Quel est le critère de Cauchy de convergence uniforme d'une suite de fonctions définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :			
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$		
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $			
$ \exists \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$		
$ \exists \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $			
Question 4 ♣			
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$		
\Box converge simplement sur $[1, +\infty[$			
converge uniformément sur [1, 2]			
converge uniformément sur [0, 1]			
converge uniformément sur $[0, +\infty[$			

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci-	
$\square_2 \square_2 \square_2 \square_2 \square_2 \square_2 \square_2 \square_2$	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{bmatrix} 6 & \boxed{6} & \boxed{6} & \boxed{6} & \boxed{6} & \boxed{6} & \boxed{6} \end{bmatrix} $ $ \begin{bmatrix} 7 & \boxed{7} & \boxed{7} & \boxed{7} & \boxed{7} & \boxed{7} \end{bmatrix} $		
	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
\square converge uniformément sur $]1, +\infty[$		
\square converge uniformément sur $]0, +\infty[$		
\square converge uniformément sur $\mathbb R$		
converge uniformément sur [1, 2]		
Question 2 &		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
\Box converge simplement sur $[1, +\infty[$		
$\hfill \Box$ converge uniformément sur $[1,2]$		
$\hfill \Box$ converge uniformément sur $[0,1[$		
\square converge uniformément sur $[0, +\infty[$		
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$\in A, f_n(x) - f_p(x) < \epsilon$	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$		
\Box converge uniformément sur $[a,1]$ $(a \in]0,1[)$		
Converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$ Converge uniformément sur $[0, a]$ $(a \in]0, 1[)$		
	ion constante	
\square converge simplement sur $[0,1]$ vers une fonct	JOH COHSTAILE	

	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci-	
	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!). Nom et prénom :	
$\square 4$	Trom or pronom.	
5555555		
8888888	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
\square converge uniformément sur $]0, +\infty[$		
\square converge uniformément sur \mathbb{R}		
converge uniformément sur [1, 2]		
\square converge uniformément sur $]1, +\infty[$		
Question 2 \clubsuit Quel est le critère de Cauchy de convergence uniforme d'une suite de fonctions définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :		
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_p(x) < \epsilon $		
	$ > n_0, f_n(x) - f_{n_0}(x) < \epsilon $	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge uniformément sur $[0,a]$ $(a \in]0,1[)$		
$\ $ converge simplement sur $[0,1]$ vers une fonction constante		
Question 4 &		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
\Box converge simplement sur $[1, +\infty[$		
\square converge uniformément sur $[1,2]$		
$\hfill \Box$ converge uniformément sur $[0,1[$		
$\hfill \Box$ converge uniformément sur $[0,+\infty[$		

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	← codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!). Nom et prénom :	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
converge simplement sur $[0,1]$ vers une fonction constante converge uniformément sur $[0,a]$ $(a \in]0,1[)$ converge uniformément sur $[a,1]$ $(a \in]0,1[)$		
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
$\hfill \Box$ converge uniformément sur $]1,+\infty[$		
$\ $ converge uniformément sur $]0,+\infty[$		
\square converge uniformément sur $\mathbb R$		
\square converge uniformément sur $[1,2]$		
Question 3 \clubsuit Quel est le critère de Cauchy de convergence uniforme d'une suite de fonctions définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :		
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
	$\in A, f_n(x) - f_p(x) < \epsilon$	
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$	
$ \exists \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $		
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_{n_0}(x) < \epsilon $		
Question 4 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
\Box converge simplement sur $[1, +\infty[$		
\square converge uniformément sur $[0,1[$		
\square converge uniformément sur $[1,2]$		
$\hfill \Box$ converge uniformément sur $[0,+\infty[$		

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[0, +\infty[$ ☐ converge uniformément sur $[0, 1[$	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
☐ converge uniformément sur $]0, +\infty[$ ☐ converge uniformément sur \mathbb{R} ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $]1, +\infty[$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
	ion constante
Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$ > n_0, f_n(x) - f_p(x) < \epsilon $ $ \in A, f_n(x) - f_p(x) < \epsilon $ $ > n_0, f_n(x) - f_p(x) < \epsilon $

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant cicontre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :	
8888888	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 &		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
□ converge uniformément sur $[1,2]$ □ converge uniformément sur $[0,+\infty[$ □ converge simplement sur $[1,+\infty[$ □ converge uniformément sur $[0,1[$		
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
$ \exists \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_p(x) < \epsilon $		
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	is définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
converge uniformément sur $]0, +\infty[$		
$\hfill \Box$ converge uniformément sur $[1,2]$		
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge simplement sur $[0,1]$ vers une fonct	ion constante	
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$		

	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci-	
	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
	Les cases doivent être complètement noir-	
	cies avec un stylo NOIR.	
Question 1 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
converge uniformément sur [0, 1]		
\square converge uniformément sur $[0, +\infty[$		
\square converge simplement sur $[1, +\infty[$		
\square converge uniformément sur $[1,2]$		
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
\square converge uniformément sur $[1,2]$		
\Box converge uniformément sur $]1, +\infty[$		
converge uniformément sur \mathbb{R}		
converge dimorment but in		
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge simplement sur $[0,1]$ vers une fonct	tion constante	
Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
$ \exists \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_p(x) < \epsilon $		
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $		
	~/ 10 10 (/ 0 10 (/ 1	

	QCM3L Suites de Fonctions Préing2	
1 1	← codez votre numéro d'étudiant cicontre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom : Les cases doivent être complètement noir-	
	cies avec un stylo NOIR. as définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
☐ converge uniformément sur \mathbb{R} ☐ converge uniformément sur $[1,2]$ ☐ converge uniformément sur $]0,+\infty[$ ☐ converge uniformément sur $]1,+\infty[$		
Question 2 \clubsuit Quel est le critère de Cauchy de convergence uniforme d'une suite de fonctions définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :		
Question 3 ♣		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$ Converge simplement sur $[1, +\infty[$		
☐ converge uniformément sur $[0,1[$ ☐ converge uniformément sur $[1,2]$ ☐ converge uniformément sur $[0,+\infty[$		
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
□ converge uniformément sur $[0, a]$ $(a \in]0, 1[)$ □ converge simplement sur $[0, 1]$ vers une fonct □ converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$	ion constante	

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
converge uniformément sur $[0,a]$ $(a \in]0,1[)$ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ converge simplement sur $[0,1]$ vers une fonct	tion constante	
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$	
$ \exists \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$ > n_0, f_n(x) - f_p(x) < \epsilon $	
$ \exists \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$	
$ \exists x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_p(x) < \epsilon $		
$ \exists \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x $	$\in A, f_n(x) - f_p(x) < \epsilon$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
\square converge uniformément sur $\mathbb R$		
converge uniformément sur [1, 2]		
\square converge uniformément sur $]1, +\infty[$		
Question 4 &		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
\square converge uniformément sur $[1,2]$		
\Box converge simplement sur $[1, +\infty[$		
$\hfill \Box$ converge uniformément sur $[0,1[$		
$\hfill \Box$ converge uniformément sur $[0,+\infty[$		

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{bmatrix} 5 \\ \hline \end{bmatrix} 5 \begin{bmatrix} 5 \\ \end{bmatrix} 5 \begin{bmatrix} 5 \\ $	
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
converge uniformément sur $[a,1]$ $(a \in]0,1[)$ converge uniformément sur $[0,a]$ $(a \in]0,1[)$ converge simplement sur $[0,1]$ vers une fonct	tion constante
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	* * * * * * * * * * * * * * * * * * * *
	-
	* * * * * * * * * * * * * * * * * * * *
Question 3 &	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
$\hfill \Box$ converge uniformément sur $[0,1[$	
$\hfill \Box$ converge uniformément sur $[0,+\infty[$	
\square converge uniformément sur $[1,2]$	
\Box converge simplement sur $[1, +\infty[$	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
$\hfill \Box$ converge uniformément sur $\mathbb R$	
\square converge uniformément sur $]0, +\infty[$	
\square converge uniformément sur $[1,2]$	
\Box converge uniformément sur $]1, +\infty[$	

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nom et prénom :	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
Question 2 \clubsuit Quel est le critère de Cauchy de convergence uniforme d'une suite de fonctions définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :		
	* * * * * * * * * * * * * * * * * * * *	
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_{n_0}(x) < \epsilon $ $ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_{n_0}(x) < \epsilon $		
Question 3 ♣		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
☐ converge uniformément sur $[0,1[$ ☐ converge simplement sur $[1,+\infty[$		
☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[0, +\infty[$		
	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
	tion constante	
started so samplement but [0,1] vote the follow		

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	QCM3L Suites de Fonctions Préing2 ← codez votre numéro d'étudiant ci-
$\square 2 \square 2$	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
8 8 8 8 8 8 8 9 9 9 9 9 9 9 9	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction	as définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonc	tion constante
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$	
converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
$\hfill \Box$ converge uniformément sur $]1,+\infty[$	
$\hfill \Box$ converge uniformément sur $]0,+\infty[$	
\square converge uniformément sur $[1,2]$	
\square converge uniformément sur $\mathbb R$	
Question 3 $\ \ \ \ \ \ \ \ \ \ $ Quel est le critère de Cauchy d'définie sur $A\subset\mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \exists x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$0 > n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$0 > n_0, f_n(x) - f_{n_0}(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$0 > n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x $	$e \in A, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	
Question 4 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
$\hfill \Box$ converge uniformément sur $[0,+\infty[$	
\Box converge simplement sur $[1, +\infty[$	
\square converge uniformément sur $[0,1[$	
\square converge uniformément sur $[1,2]$	

	QCM3L Suites de Fonctions Préing2	
1 1	← codez votre numéro d'étudiant cicontre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom : Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
□ converge uniformément sur \mathbb{R} □ converge uniformément sur $]1, +\infty[$ □ converge uniformément sur $]0, +\infty[$ □ converge uniformément sur $[1, 2]$		
Question 2 \clubsuit Quel est le critère de Cauchy de convergence uniforme d'une suite de fonctions définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :		
	* * * * * * * * * * * * * * * * * * * *	
Question 3 \clubsuit		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
□ converge uniformément sur $[1, 2]$ □ converge uniformément sur $[0, 1[$ □ converge uniformément sur $[0, +\infty[$ □ converge simplement sur $[1, +\infty[$		
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
☐ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ ☐ converge uniformément sur $[0,a]$ $(a \in]0,1[)$ ☐ converge simplement sur $[0,1]$ vers une fonct		

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	← codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :	
88888888 9999999	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 &		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$r = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
☐ converge uniformément sur $[0, +\infty[$ ☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[1, 2]$		
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$		
converge simplement sur $[0,1]$ vers une fonct converge uniformément sur $[a,1]$ $(a \in]0,1[)$	non constante	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
$\hfill \Box$ converge uniformément sur $\mathbb R$		
\square converge uniformément sur $[1,2]$		
\square converge uniformément sur $]1, +\infty[$		

	QCM3L Suites de Fonctions Préing2	
	\longleftarrow codez votre numéro d'étudiant ci-	
	contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
8888888	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
\square converge uniformément sur $[1,2]$		
$\hfill \Box$ converge uniformément sur $\mathbb R$		
\Box converge uniformément sur $]0, +\infty[$		
\square converge uniformément sur $]1, +\infty[$		
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge simplement sur $[0,1]$ vers une fonction constante		
Question 3 \clubsuit Quel est le critère de Cauchy de convergence uniforme d'une suite de fonctions définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :		
	$\in A, f_n(x) - f_p(x) < \epsilon$	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
Question 4 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
\square converge uniformément sur $[1,2]$		
converge uniformément sur [0, 1[
\square converge uniformément sur $[0, +\infty[$		
\square converge simplement sur $[1, +\infty[$		

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 🕹	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
\Box converge simplement sur $[1, +\infty[$	
converge uniformément sur [1, 2]	
converge uniformément sur [0, 1[
$\hfill \Box$ converge uniformément sur $[0,+\infty[$	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge uniformément sur $[0,a]$ $(a \in]0,1[)$	
converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$	
\square converge simplement sur $[0,1]$ vers une fonct	ion constante
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	is définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $\mathbb R$	
$\hfill \Box$ converge uniformément sur $]1,+\infty[$	
$\hfill \Box$ converge uniformément sur $[1,2]$	
Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x \in \mathbb{N}, n > n_0, p > n_0,$	$\in A, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
	Les cases doivent être complètement noir-	
	cies avec un stylo NOIR.	
Question 1 4		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
\square converge uniformément sur $[0, +\infty[$		
converge uniformément sur [0, 1]		
\square converge simplement sur $[1, +\infty[$		
\square converge uniformément sur $[1, 2]$		
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$		
\square converge simplement sur $[0,1]$ vers une fonction constante		
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
\square converge uniformément sur $\mathbb R$		
$\hfill \Box$ converge uniformément sur $[1,2]$		
\Box converge uniformément sur $]0, +\infty[$		
\square converge uniformément sur $]1, +\infty[$		
Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$	

	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci-	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
\square 7		
	I	
	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 4		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$r = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
\Box converge simplement sur $[1, +\infty[$		
converge uniformément sur [0,1]		
\Box converge uniformément sur $[0, +\infty[$		
converge uniformément sur [1, 2]		
Converge uniformement sur [1,2]		
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$\in A, f_n(x) - f_p(x) < \epsilon$	
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$	
	f(x) = f(x) f(x) f(x)	
	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
converge simplement sur [0, 1] vers une fonct	cion constante	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
converge uniformément sur [1, 2]		
converge uniformément sur $]0, +\infty[$		
☐ converge uniformément sur ℝ		
\square converge uniformément sur $]1, +\infty[$		

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
$\square 4 \ \square 4$	
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$\in A, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $]0,+\infty[$	
converge uniformément sur [1,2]	
\square converge uniformément sur \mathbb{R}	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	
(0.17,11	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
O converge circular ent cur [0, 1] verg une fener	
converge simplement sur [0,1] vers une fonct	
☐ converge uniformément sur $[a,1]$ $(a ∈]0,1[)$ ☐ converge uniformément sur $[0,a]$ $(a ∈]0,1[)$	tion constante
	tion constante
□ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ □ converge uniformément sur $[0,a]$ $(a \in]0,1[)$ Question 4 ♣ Soit $(f_n)_n$ une suite de fonctions définies par $f_n(a)_n$	tion constante
□ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ □ converge uniformément sur $[0,a]$ $(a \in]0,1[)$ Question 4 ♣ Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ □ converge uniformément sur $[0,+\infty[$	tion constante

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci-	
	contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).	
$\square 3 \square 3$	Nom et prénom :	
	Les cases doivent être complètement noir-	
	cies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite $(f_n)_n$		
\square converge uniformément sur $\mathbb R$		
converge uniformément sur [1, 2]		
\square converge uniformément sur $]1, +\infty[$		
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$		
\square converge simplement sur $[0,1]$ vers une fonct	tion constante	
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$		
\square converge uniformement sur $[0, u]$ $(u \in]0, 1[)$		
Question 3 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
$\hfill \Box$ converge uniformément sur $[0,+\infty[$		
\Box converge simplement sur $[1, +\infty[$		
converge uniformément sur [0, 1]		
converge uniformément sur [1, 2]		
	e convergence uniforme d'une suite de fonctions	
	$\in A \mid f_{x}(x) - f_{x}(x) < \epsilon$	

	QCM3L Suites de Fonctions Préing2	
1 1	codez votre numéro d'étudiant cicontre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom : Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 ♣	cies avec un stylo ivoire.	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$x = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
□ converge uniformément sur $[0, +\infty[$ □ converge simplement sur $[1, +\infty[$ □ converge uniformément sur $[1, 2]$ □ converge uniformément sur $[0, 1[$		
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
Question 3 \clubsuit Quel est le critère de Cauchy définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$		
□ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ □ converge simplement sur $[0,1]$ vers une fonction constante □ converge uniformément sur $[0,a]$ $(a \in]0,1[)$		

	QCM3L Suites de Fonctions Préing2	
1 1	codez votre numéro d'étudiant cicontre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :	
	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
☐ converge uniformément sur]1, +∞[☐ converge uniformément sur \mathbb{R} ☐ converge uniformément sur [1, 2] ☐ converge uniformément sur]0, +∞[
Question 2 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
□ converge uniformément sur $[0, 1[$ □ converge uniformément sur $[1, 2]$ □ converge uniformément sur $[0, +\infty[$ □ converge simplement sur $[1, +\infty[$		
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	

	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci-	
\square_2 \square_2 \square_2 \square_2 \square_2 \square_2 \square_2	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
	Les cases doivent être complètement noir-	
	cies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
converge uniformément sur [1, 2]		
converge uniformément sur $]0, +\infty[$		
\square converge uniformément sur $]1, +\infty[$		
\square converge uniformément sur \mathbb{R}		
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$		
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$		
\Box converge simplement sur $[0,1]$ vers une fonct	tion constante	
converge uniformément sur $[a, 1]$ ($a \in]0, 1[$)		
Question 3 4		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
\square converge uniformément sur $[1,2]$		
\square converge uniformément sur $[0,1[$		
\Box converge simplement sur $[1, +\infty[$		
\Box converge uniformément sur $[0, +\infty[$		
Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
$ \exists \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x \in A, f_n(x) - f_p(x) < \epsilon $		
$ \exists \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_p(x) < \epsilon $		
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$	

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci-	
	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
	Les cases doivent être complètement noircies avec un stylo NOIR.	
	cles avec un stylo NOIIt.	
Question 1 ♣		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
converge uniformément sur [1, 2]		
\square converge uniformément sur $[0, +\infty[$		
converge uniformément sur [0, 1]		
Converge unnormement sur [0, 1]		
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
converge uniformément sur [1, 2]		
\square converge uniformément sur \mathbb{R}		
converge uniformément sur $]0, +\infty[$		
\square converge uniformément sur $]1, +\infty[$		
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge simplement sur $[0,1]$ vers une fonction constante		
\square converge uniformément sur $[0,a]$ $(a \in]0,1[)$		
	e convergence uniforme d'une suite de fonctions	
définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :		
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$	
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_p(x) < \epsilon $		

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
8888888	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
Question 2 4		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
\square converge uniformément sur $[1,2]$		
\square converge simplement sur $[1, +\infty[$		
\Box converge uniformément sur $[0, +\infty[$		
\square converge uniformément sur $[0,1[$		
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge simplement sur $[0,1]$ vers une fonction constante		
Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_p(x) < \epsilon $		
$ \exists x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_{n_0}(x) < \epsilon $		

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
\square converge simplement sur $[1, +\infty[$		
converge uniformément sur [1, 2]		
\square converge uniformément sur $[0,1[$		
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
\square converge uniformément sur $]0, +\infty[$		
\square converge uniformément sur $\mathbb R$		
converge uniformément sur [1, 2]		
\square converge uniformément sur $]1, +\infty[$		
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$	tion constants	
\square converge simplement sur $[0,1]$ vers une fonct	hon constante	

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci-	
	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!). Nom et prénom :	
	Nom et prenom .	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
\Box converge simplement sur $[1, +\infty[$		
converge uniformément sur [0, 1[
converge uniformément sur [1, 2]		
$\hfill \Box$ converge uniformément sur $[0,+\infty[$		
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$		
\square converge simplement sur $[0,1]$ vers une fonct	ion constante	
$\hfill \Box$ converge uniformément sur $[0,a]\ (a\in]0,1[)$		
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	as définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
$\hfill \Box$ converge uniformément sur $[1,2]$		
$\hfill \Box$ converge uniformément sur]1, +\infty[
$\hfill \Box$ converge uniformément sur $\mathbb R$		
Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$\in A, f_n(x) - f_p(x) < \epsilon$	
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $		
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $		

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	← codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
8888888	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite $(f_n)_n$		
□ converge uniformément sur $]0, +\infty[$ □ converge uniformément sur \mathbb{R} □ converge uniformément sur $[1,2]$ □ converge uniformément sur $]1, +\infty[$		
Question 2 ♣		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
converge uniformément sur [1, 2]		
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
□ converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$ □ converge uniformément sur $[0, a]$ $(a \in]0, 1[)$ □ converge simplement sur $[0, 1]$ vers une fonction constante		
Question 4 \clubsuit Quel est le critère de Cauchy de convergence uniforme d'une suite de fonctions définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :		
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_p(x) < \epsilon $		
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_p(x) < \epsilon $		

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	← codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
☐ converge uniformément sur $[0, +\infty[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[0, 1[$ ☐ converge simplement sur $[1, +\infty[$		
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
☐ converge simplement sur $[0,1]$ vers une fonct ☐ converge uniformément sur $[0,a]$ $(a \in]0,1[)$ ☐ converge uniformément sur $[a,1]$ $(a \in]0,1[)$	tion constante	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
$\hfill \Box$ converge uniformément sur $[1,2]$		
\Box converge uniformément sur $]1, +\infty[$		
Question 4 & Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
$ \exists \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x \in A, f_n(x) - f_p(x) < \epsilon $		
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $ $ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $		

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
8888888	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	cion constante
$\hfill \Box$ converge uniformément sur $[a,1]\ (a\in]0,1[)$	
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$\in A, f_n(x) - f_p(x) < \epsilon$
Question 3 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
\square converge uniformément sur $[0,1[$	
\square converge uniformément sur $[0, +\infty[$	
converge uniformément sur [1, 2]	
\square converge simplement sur $[1, +\infty[$	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $]0, +\infty[$	
\square converge uniformément sur $[1,2]$	
\square converge uniformément sur $]1, +\infty[$	
\square converge uniformément sur $\mathbb R$	

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
converge uniformément sur [1, 2]	
\square converge uniformément sur $]0, +\infty[$	
converge uniformément sur $]1, +\infty[$	
\square converge uniformément sur \mathbb{R}	
_	
Question 2 &	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
\square converge uniformément sur $[0, +\infty[$	
\square converge uniformément sur $[0,1[$	
\Box converge simplement sur $[1, +\infty[$	
$\hfill \Box$ converge uniformément sur $[1,2]$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonc	tion constante
Question 4 \clubsuit Quel est le critère de Cauchy definie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \exists \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x $	$\in A, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$

	QCM3L Suites de Fonctions Préing2
\square_1 \square_1 \square_1 \square_1 \square_1 \square_1 \square_1	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
$\Box 6 \Box 6$	
\square 7	
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 &	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\square converge uniformément sur $[1,2]$	
converge uniformément sur $[0, +\infty[$	
converge uniformément sur [0, 1]	
converge dimormement sur [0, 1]	
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$\in A, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	as définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\Box converge uniformément sur $]0, +\infty[$	
converge uniformément sur [1, 2]	
\square converge uniformément sur \mathbb{R}	
	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\Box converge simplement sur $[0,1]$ vers une fonct	
converge uniformément sur $[a,1]$ ($a \in]0,1[$)	
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$	

	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci-	
	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\ \ \ \ \ \ \ \ \ \ \ \ \ $		
8888888	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
\square converge uniformément sur $[1,2]$		
converge uniformément sur $[1, 2]$		
converge uniformément sur \mathbb{R}		
converge uniformément sur \mathbb{R} converge uniformément sur $]0, +\infty[$		
converge uniformement sur jo, † ∞[
Question 2 ♣		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
\Box converge simplement sur $[1, +\infty[$		
\square converge uniformément sur $[0, +\infty[$		
\square converge uniformément sur $[0,1[$		
\square converge uniformément sur $[1,2]$		
Question 3 \clubsuit Quel est le critère de Cauchy d définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$0 > n_0, f_n(x) - f_p(x) < \epsilon$	
	$\epsilon \in A, f_n(x) - f_p(x) < \epsilon$	
	as définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge simplement sur $[0,1]$ vers une fonc	tion constante	
\square converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$		
\square converge uniformément sur $[0,a]$ $(a \in]0,1[)$		

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\ \ \ \ \ \ \ \ \ \ \ \ \ $	
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy definie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$f \in A, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$0 > n_0, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$0 > n_0, f_n(x) - f_p(x) < \epsilon$
	$0 > n_0, f_n(x) - f_{n_0}(x) < \epsilon$
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction	as définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonc	tion constante
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $\mathbb R$	
\square converge uniformément sur $]0, +\infty[$	
\square converge uniformément sur $]1, +\infty[$	
\square converge uniformément sur $[1,2]$	
Question 4 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
$\hfill \Box$ converge uniformément sur $[0,1[$	
$\hfill \Box$ converge uniformément sur $[0,+\infty[$	
$\hfill \Box$ converge uniformément sur $[1,2]$	
\square converge simplement sur $[1, +\infty[$	

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2
1 1	codez votre numéro d'étudiant cicontre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom : Les cases doivent être complètement noir-
	cies avec un stylo NOIR. s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
☐ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ ☐ converge uniformément sur $[0,a]$ $(a \in]0,1[)$ ☐ converge simplement sur $[0,1]$ vers une fonction	tion constante
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
Question 3 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
☐ converge uniformément sur $[0, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge simplement sur $[1, +\infty[$	
Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$ $\in A, f_n(x) - f_p(x) < \epsilon$ $> n_0, f_n(x) - f_p(x) < \epsilon$

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci-	
	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
	Les cases doivent être complètement noir-	
	cies avec un stylo NOIR.	
Question 1 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
\Box converge simplement sur $[1, +\infty[$		
\square converge uniformément sur $[1,2]$		
\square converge uniformément sur $[0,1[$		
\Box converge uniformément sur $[0, +\infty[$		
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$\in A, f_n(x) - f_p(x) < \epsilon$	
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	is définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
\square converge uniformément sur $]1, +\infty[$		
\square converge uniformément sur $]0, +\infty[$		
converge uniformément sur [1, 2]		
\square converge uniformément sur $\mathbb R$		
	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge simplement sur $[0,1]$ vers une fonct	ion constante	
converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$		
converge uniformément sur $[a, 1]$ ($a \in]0, 1[$) converge uniformément sur $[0, a]$ ($a \in]0, 1[$)		

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy definie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	The state of the s
	The state of the s
	* * * * * * * * * * * * * * * * * * * *
	$\in A, f_n(x) - f_p(x) < \epsilon$
Question 2 4	
•	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge simplement sur $[1,+\infty[$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge simplement sur $[1,+\infty[$ converge uniformément sur $[1,2]$	$f(x)=nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$ s définies par $f_n(x)=x^n$. Alors, la suite $(f_n)_n$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge simplement sur $[1,+\infty[$ converge uniformément sur $[1,2]$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction converge simplement sur $[0,1]$ vers une fonc	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(a)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge simplement sur $[1,+\infty[$ converge uniformément sur $[1,2]$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction converge simplement sur $[0,1]$ vers une fonction converge uniformément sur $[0,a]$ $(a \in]0,1[)$	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge simplement sur $[1,+\infty[$ converge uniformément sur $[1,2]$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction converge simplement sur $[0,1]$ vers une fonc	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(a)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge simplement sur $[1,+\infty[$ converge uniformément sur $[1,2]$ Question 3 Soit $(f_n)_n$ une suite de fonction converge simplement sur $[0,1]$ vers une fonction converge uniformément sur $[0,a]$ $(a \in]0,1[)$ converge uniformément sur $[a,1]$ $(a \in]0,1[)$	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(a)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge simplement sur $[1,+\infty[$ converge uniformément sur $[1,2]$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction converge simplement sur $[0,1]$ vers une fonction converge uniformément sur $[0,a]$ $(a \in]0,1[)$ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$ tion constante
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(a)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge simplement sur $[1,+\infty[$ converge uniformément sur $[1,2]$ Question 3 $\$ Soit $(f_n)_n$ une suite de fonction converge simplement sur $[0,1]$ vers une fonc converge uniformément sur $[0,a]$ $(a \in]0,1[)$ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ Question 4 $\$ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$ tion constante
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(a)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge simplement sur $[1,+\infty[$ converge uniformément sur $[1,2]$ Question 3 $\$ Soit $(f_n)_n$ une suite de fonction converge simplement sur $[0,1]$ vers une fonction converge uniformément sur $[0,a]$ $(a \in]0,1[)$ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ Question 4 $\$ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[1,+\infty[$	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$ tion constante

	QCM3L Suites de Fonctions Préing2
1 1	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
☐ converge uniformément sur $]0, +\infty[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur \mathbb{R} ☐ converge uniformément sur $]1, +\infty[$	
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$ \begin{aligned} &\in A, f_n(x) - f_p(x) < \epsilon \\ &> n_0, f_n(x) - f_p(x) < \epsilon \\ &> n_0, f_n(x) - f_p(x) < \epsilon \end{aligned} $
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
	tion constante
Question 4 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
☐ converge uniformément sur $[0,1[$ ☐ converge simplement sur $[1,+\infty[$ ☐ converge uniformément sur $[0,+\infty[$	
\square converge uniformément sur $[1,2]$	

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!). Nom et prénom :
	Nom et prenom .
555555	
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy d définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x $	$\in A, f_n(x) - f_p(x) < \epsilon$
	$0 > n_0, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$0 > n_0, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$0 > n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
Question 2 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\Box converge simplement sur $[1, +\infty[$	
\square converge uniformément sur $[0, +\infty[$	
converge uniformément sur [1, 2]	
converge uniformément sur [0, 1]	
	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
converge simplement sur [0, 1] vers une fonc	tion constante
converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$	
converge uniformément sur $[0, a]$ $(a \in]0, 1[)$	
	2 2
Question 4 Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $[1,2]$	
$\hfill \Box$ converge uniformément sur $\mathbb R$	
$\hfill \Box$ converge uniformément sur $]1,+\infty[$	
$\hfill \Box$ converge uniformément sur $]0,+\infty[$	

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
5555555	
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$\in A, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$ > n_0, f_n(x) - f_{n_0}(x) < \epsilon $
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	• • • • •
	$\sum R(0) fR(\omega) fR(\omega) fR(\omega) $
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\Box converge uniformément sur $]1, +\infty[$	
\square converge uniformément sur $\mathbb R$	
converge uniformément sur [1, 2]	
converge uniformément sur $]0, +\infty[$	
converge uniformement sur jo, + ∞[
Question 3 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
\square converge uniformément sur $[0,1[$	
\Box converge simplement sur $[1, +\infty[$	
converge uniformément sur [1, 2]	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	tion constante
\Box converge uniformément sur $[0,a]$ $(a \in]0,1[)$	

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!). Nom et prénom :
	Nom et prenom .
$\ \ \ \ \ \ \ \ \ \ \ \ \ $	
8888888	Les acces deivent être complètement neir
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x $	$\in A, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	tion constante
Question 3 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\Box converge uniformément sur $[0, +\infty[$	
\Box converge simplement sur $[1, +\infty[$	
$\hfill \Box$ converge uniformément sur $[1,2]$	
$\hfill \Box$ converge uniformément sur $[0,1[$	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $\mathbb R$	
$\hfill \Box$ converge uniformément sur $]1,+\infty[$	
$\hfill \Box$ converge uniformément sur $[1,2]$	

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
$\square 3 \square 3$	ci-dessous (le NOM d'abord!). Nom et prénom :
	Nom et prenom .
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
8888888	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$\in A, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
$ \exists \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ Converge uniformément sur $[1,2]$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
$(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
$(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
$(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
$(f_n)_n$ \square converge uniformément sur $[1,2]$ \square converge uniformément sur \mathbb{R} \square converge uniformément sur $]1,+\infty[$	
$(f_n)_n$ \square converge uniformément sur $[1,2]$ \square converge uniformément sur \mathbb{R} \square converge uniformément sur $]1,+\infty[$ \square converge uniformément sur $]0,+\infty[$	
$(f_n)_n$ \square converge uniformément sur $[1,2]$ \square converge uniformément sur \mathbb{R} \square converge uniformément sur $]1,+\infty[$ \square converge uniformément sur $]0,+\infty[$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
$(f_n)_n$ \square converge uniformément sur $[1,2]$ \square converge uniformément sur \mathbb{R} \square converge uniformément sur $]1,+\infty[$ \square converge uniformément sur $]0,+\infty[$ Question $3 \clubsuit$ Soit $(f_n)_n$ une suite de fonction \square converge uniformément sur $[a,1]$ $(a \in]0,1[)$	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
$(f_n)_n$ \square converge uniformément sur $[1,2]$ \square converge uniformément sur \mathbb{R} \square converge uniformément sur $]1,+\infty[$ \square converge uniformément sur $]0,+\infty[$ Question 3 \blacktriangleleft Soit $(f_n)_n$ une suite de fonction \square converge uniformément sur $[a,1]$ $(a \in]0,1[)$ \square converge simplement sur $[0,1]$ vers une fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
$(f_n)_n$ \square converge uniformément sur $[1,2]$ \square converge uniformément sur \mathbb{R} \square converge uniformément sur $]1,+\infty[$ \square converge uniformément sur $]0,+\infty[$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction \square converge uniformément sur $[a,1]$ $(a \in]0,1[)$ \square converge simplement sur $[0,1]$ vers une fonction \square converge uniformément sur $[0,a]$ $(a \in]0,1[)$	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$ tion constante
$(f_n)_n$ ☐ converge uniformément sur $[1,2]$ ☐ converge uniformément sur \mathbb{R} ☐ converge uniformément sur $]1,+\infty[$ ☐ converge uniformément sur $]0,+\infty[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction ☐ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ ☐ converge simplement sur $[0,1]$ vers une fonc ☐ converge uniformément sur $[0,a]$ $(a \in]0,1[)$ Question 4 ♣	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$ tion constante
$(f_n)_n$ \square converge uniformément sur $[1,2]$ \square converge uniformément sur \mathbb{R} \square converge uniformément sur $]1,+\infty[$ \square converge uniformément sur $]0,+\infty[$ Question 3 \square Soit $(f_n)_n$ une suite de fonction \square converge uniformément sur $[a,1]$ $(a \in]0,1[)$ \square converge simplement sur $[0,1]$ vers une fonction converge uniformément sur $[0,a]$ $(a \in]0,1[)$ Question 4 \square Soit $(f_n)_n$ une suite de fonctions définies par $f_n(a)$	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$ tion constante
$(f_n)_n$ \square converge uniformément sur $[1,2]$ \square converge uniformément sur \mathbb{R} \square converge uniformément sur $]1,+\infty[$ \square converge uniformément sur $]0,+\infty[$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction \square converge uniformément sur $[a,1]$ $(a \in]0,1[)$ \square converge simplement sur $[0,1]$ vers une fonction \square converge uniformément sur $[0,a]$ $(a \in]0,1[)$ Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(a \in]0,1[)$ \square converge uniformément sur $[0,a]$ $[0,+\infty[$	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$ tion constante

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
$\square_2 \square_2 \square_2 \square_2 \square_2 \square_2 \square_2 \square_2 \square_2$	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	convergence uniforme d'une suite de fonctions
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
$ \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x $	$\in A, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_n(x) < \epsilon$
	• • • • • • • • • • • • • • • • • • • •
	* * * * * * * * * * * * * * * * * * * *
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	s définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $\mathbb R$	
\square converge uniformément sur $[1,2]$	
\square converge uniformément sur $]0, +\infty[$	
$\hfill \Box$ converge uniformément sur]1, +\infty[
Question 3 4	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
$\hfill \Box$ converge uniformément sur $[0,1[$	
$\hfill \Box$ converge uniformément sur $[1,2]$	
$\hfill \Box$ converge uniformément sur $[0,+\infty[$	
\square converge simplement sur $[1, +\infty[$	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	ion constante
$\hfill \Box$ converge uniformément sur $[0,a]\ (a\in]0,1[)$	
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$	

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nom et prénom :
66666666 77777777 88888888	T. 12 4 24 25 124 24 25
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction converge uniformément sur $[a,1]$ $(a \in]0,1[)$ converge simplement sur $[0,1]$ vers une fonc converge uniformément sur $[0,a]$ $(a \in]0,1[)$	is définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$ tion constante
Question 2 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[1,2]$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge simplement sur $[1,+\infty[$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
Question $4 \clubsuit$ Quel est le critère de Cauchy d' définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$\in A, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$I_{p(\omega)} = I_{p(\omega)} = I_{p(\omega)}$

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
$\square 2 \square 2$	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!). Nom et prénom :
$\square 4$	Trom or pronon.
$\square 5$	
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $\mathbb R$	
$\hfill \Box$ converge uniformément sur $]1,+\infty[$	
$\hfill \Box$ converge uniformément sur $[1,2]$	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonc	tion constante
Question 3 &	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
$\hfill \Box$ converge uniformément sur $[0,1[$	
\Box converge simplement sur $[1, +\infty[$	
\square converge uniformément sur $[0, +\infty[$	
\square converge uniformément sur $[1,2]$	
Question 4 \clubsuit Quel est le critère de Cauchy définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
	$\in A, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
☐ converge uniformément sur \mathbb{R} ☐ converge uniformément sur $]1, +\infty[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $]0, +\infty[$		
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
	tion constante	
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$\in A, f_n(x) - f_p(x) < \epsilon$	
	$> n_0, J_n(x) - J_p(x) < \epsilon$	
Question 4 &		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
\square converge simplement sur $[1, +\infty[$		
\square converge uniformément sur $[0, +\infty[$		
converge uniformément sur [0, 1[
\square converge uniformément sur $[1,2]$		

	QCM3L Suites de Fonctions Préing2 ← codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :
6 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction \square converge uniformément sur $[a,1]$ $(a \in]0,1[)$ \square converge uniformément sur $[0,a]$ $(a \in]0,1[)$ \square converge simplement sur $[0,1]$ vers une fonc	is définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$ tion constante
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$n = n\pi e^{-nx}$ Alore la suita (f)
☐ converge uniformément sur $[0, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge simplement sur $[1, +\infty[$	ns définies par $f_n(x)=ne^{-n^2x^2}.$ Alors, la suite
Question $4 \clubsuit$ Quel est le critère de Cauchy d' définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$ f_n(x) - f_p(x) < \epsilon$ $ f_n(x) - f_n(x) < \epsilon$ $ f_n(x) - f_{n_0}(x) < \epsilon$ $ f_n(x) - f_p(x) < \epsilon$

0 0	QCM3L Suites de Fonctions Préing2 ← codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom : Les cases doivent être complètement noir- cies avec un style NOIP	
	cies avec un stylo NOIR. as définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$ etion constante	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ Converge uniformément sur \mathbb{R} Converge uniformément sur $]0, +\infty[$ Converge uniformément sur $[1,2]$ Converge uniformément sur $]1, +\infty[$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
Question 3 \(\text{Quel Power Question 3.} \) Quel est le critère de Cauchy de convergence uniforme d'une suite de fonctions définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :		
☐ converge uniformément sur $[0, +\infty[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[0, 1[$ ☐ converge simplement sur $[1, +\infty[$		

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
$\square_2 \square_2 \square_2 \square_2 \square_2 \square_2 \square_2 \square_2 \square_2$	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	convergence uniforme d'une suite de fonctions
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
	$\in A, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	
	$> n_0, f_n(x) - f_n(x) < \epsilon$
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	s définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $]1, +\infty[$	
\square converge uniformément sur $[1,2]$	
\square converge uniformément sur $]0, +\infty[$	
☐ converge uniformément sur ℝ	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	ion constante
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$	
$\hfill \Box$ converge uniformément sur $[0,a]\ (a\in]0,1[)$	
Question 4 &	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
$\hfill \Box$ converge uniformément sur $[0,+\infty[$	
\square converge simplement sur $[1, +\infty[$	
$\hfill \Box$ converge uniformément sur $[0,1[$	
\square converge uniformément sur $[1,2]$	

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction	ns définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$	
\Box converge simplement sur $[0,1]$ vers une fond	ction constante
Question 2 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n($	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\square converge uniformément sur $[1,2]$	
\square converge uniformément sur $[0,1[$	
\Box converge simplement sur $[1, +\infty[$	
Question 3 \clubsuit Quel est le critère de Cauchy définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	de convergence uniforme d'une suite de fonctions
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p \in \mathbb{N}$	$p > n_0, f_n(x) - f_{n_0}(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p \in \mathbb{N}, n$	
	-
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ons définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $[1,2]$	
$\hfill \square$ converge uniformément sur $\mathbb R$	

	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci-	
	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
	Les cases doivent être complètement noir-	
	cies avec un stylo NOIR.	
Question 1 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
$\hfill \Box$ converge uniformément sur $[0,+\infty[$		
\square converge simplement sur $[1, +\infty[$		
\square converge uniformément sur $[1,2]$		
\square converge uniformément sur $[0,1[$		
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$	
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$	
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	s définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
converge uniformément sur [1, 2]		
converge uniformément sur R		
\square converge uniformément sur $]0, +\infty[$		
\square converge uniformément sur $]1, +\infty[$		
	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge simplement sur $[0,1]$ vers une fonct	ion constante	
converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$		

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
8888888	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
	tion constante
Question 3 &	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, +\infty[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[0, 1[$	
Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_{n_0}(x) < \epsilon $	
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_p(x) < \epsilon $	
	$> n_0, J_n(x) - J_p(x) < \epsilon$

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
8888888 99	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
☐ converge simplement sur $[0,1]$ vers une fonct ☐ converge uniformément sur $[0,a]$ $(a \in]0,1[)$ ☐ converge uniformément sur $[a,1]$ $(a \in]0,1[)$	cion constante
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	* * * * * * * * * * * * * * * * * * * *
	• • • • •
Question 3 ♣	$\sum_{i=0}^{n} J_{i}u(x) = \int_{\mathbb{R}^{n}} J_{i}u$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
\square converge uniformément sur $[0, +\infty[$	
\square converge simplement sur $[1, +\infty[$	
$\hfill \Box$ converge uniformément sur $[0,1[$	
\square converge uniformément sur $[1,2]$	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $[1,2]$	
$\hfill \Box$ converge uniformément sur $\mathbb R$	
\square converge uniformément sur $]1, +\infty[$	

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
5555555	
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 & Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x $	$\in A, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
Question 2 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\Box converge simplement sur $[1, +\infty[$	
converge uniformément sur [0, 1]	
\Box converge uniformément sur $[0, +\infty[$	
converge uniformément sur [1, 2]	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
converge simplement sur [0, 1] vers une fonct	tion constante
converge uniformément sur $[0, a]$ $(a \in]0, 1[)$	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $]1, +\infty[$	
\square converge uniformément sur $\mathbb R$	
$\hfill \Box$ converge uniformément sur $]0,+\infty[$	
$\hfill \Box$ converge uniformément sur $[1,2]$	

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
☐ converge uniformément sur $]0, +\infty[$ ☐ converge uniformément sur $]1, +\infty[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur \mathbb{R}		
Question 2 \clubsuit Quel est le critère de Cauchy de convergence uniforme d'une suite de fonctions définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :		
•		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
converge uniformément sur [1, 2]		
converge uniformément sur [0,1[
\square converge simplement sur $[1, +\infty[$		
\square converge uniformément sur $[0, +\infty[$		
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$		
\square converge simplement sur $[0,1]$ vers une fonction constante		
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$		
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$		

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
$ \begin{bmatrix} 5 \\ \hline \end{bmatrix} 5 \begin{bmatrix} 5 \\ \hline \end{bmatrix} 6 \begin{bmatrix} 6 \\ \hline \end{bmatrix} 6 \begin{bmatrix} 6 \\ \hline \end{bmatrix} 6 \begin{bmatrix} 6 \\ \end{bmatrix} 6 \begin{bmatrix} 6$		
8 8 8 8 8 8 8 9 9 9 9 9 9 9	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
☐ converge uniformément sur \mathbb{R} ☐ converge uniformément sur $]1, +\infty[$ ☐ converge uniformément sur $]0, +\infty[$ ☐ converge uniformément sur $[1, 2]$		
Question 2 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
converge uniformément sur [0, 1]		
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$		
\square converge uniformément sur $[0,a]$ $(a \in]0,1[)$		
\square converge simplement sur $[0,1]$ vers une fonct	ion constante	

	QCM3L Suites de Fonctions Préing2
	\leftarrow codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
4444444	
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
converge uniformément sur [0, 1[
converge uniformément sur [1, 2]	
\square converge uniformément sur $[0, +\infty[$	
\square converge simplement sur $[1, +\infty[$	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$	
\square converge simplement sur $[0,1]$ vers une fonct	tion constante
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
	$\in A, f_n(x) - f_p(x) < \epsilon$
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $\mathbb R$	
converge uniformément sur $]0, +\infty[$	
converge uniformément sur [1, 2]	
\square converge uniformément sur $]1, +\infty[$	

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
<u>8</u>	T J.: \$4124
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $\mathbb R$	
converge uniformément sur $]0, +\infty[$	
converge uniformément sur [1, 2]	
converge uniformement sur j1, +∞[
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	tion constante
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$\in A, f_n(x) - f_p(x) < \epsilon$
Question 4 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
$\hfill \Box$ converge uniformément sur $[0,+\infty[$	
\Box converge simplement sur $[1, +\infty[$	
converge uniformément sur [0, 1]	
converge uniformément sur [1, 2]	

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$\in A, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
Question 2 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
converge uniformément sur [1, 2]	
converge uniformément sur [0, 1]	
converge uniformément sur $[0, +\infty[$	
\square converge simplement sur $[1, +\infty[$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	tion constante
	$-n^2x^2$
Question 4 Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
$\hfill \Box$ converge uniformément sur $[1,2]$	
converge uniformément sur $]1, +\infty[$	
\square converge uniformément sur $\mathbb R$	

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
	-
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	
	$> n_0, f_n(x) - f_p(x) < \epsilon$
Question 2 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ \square converge simplement sur $[1, +\infty[$	$e) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
\Box converge simplement sur $[1, +\infty[$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, +\infty[$ ☐	e^{-nx} . Alors, la suite $(f_n)_{n\geqslant 0}$
☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[1, 2]$	
☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[1, 2]$	$f(x)=nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$ us définies par $f_n(x)=ne^{-n^2x^2}$. Alors, la suite
☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[1, 2]$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction	
☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[1, 2]$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	
☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[1, 2]$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ ☐ converge uniformément sur $[0, +\infty[$ ☐ converge uniformément sur $[1, 2]$	
□ converge simplement sur $[1, +\infty[$ □ converge uniformément sur $[0, +\infty[$ □ converge uniformément sur $[0, 1[$ □ converge uniformément sur $[1, 2]$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ □ converge uniformément sur $[0, +\infty[$	
☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[1, 2]$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ ☐ converge uniformément sur $[0, +\infty[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[1, +\infty[$ ☐ converge uniformément sur $[1, +\infty[$ ☐ converge uniformément sur $[1, +\infty[$	
☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[1, 2]$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ ☐ converge uniformément sur $[0, +\infty[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[1, +\infty[$ ☐ converge uniformément sur $[1, +\infty[$ ☐ converge uniformément sur $[1, +\infty[$	ns définies par $f_n(x)=ne^{-n^2x^2}$. Alors, la suite s définies par $f_n(x)=x^n$. Alors, la suite $(f_n)_n$
□ converge simplement sur $[1, +\infty[$ □ converge uniformément sur $[0, +\infty[$ □ converge uniformément sur $[0, 1[$ □ converge uniformément sur $[1, 2]$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ □ converge uniformément sur $[0, +\infty[$ □ converge uniformément sur $[1, 2]$	ns définies par $f_n(x)=ne^{-n^2x^2}$. Alors, la suite s définies par $f_n(x)=x^n$. Alors, la suite $(f_n)_n$
□ converge simplement sur $[1, +\infty[$ □ converge uniformément sur $[0, +\infty[$ □ converge uniformément sur $[0, 1[$ □ converge uniformément sur $[1, 2]$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ □ converge uniformément sur $[0, +\infty[$ □ converge uniformément sur $[1, 2]$ □ converge uniformément sur $[1, 2]$ □ converge uniformément sur $[1, +\infty[$	ns définies par $f_n(x)=ne^{-n^2x^2}$. Alors, la suite s définies par $f_n(x)=x^n$. Alors, la suite $(f_n)_n$

	QCM3L Suites de Fonctions Préing2 ← codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ Converge uniformément sur $[1,2]$ converge uniformément sur $]1,+\infty[$ converge uniformément sur $]0,+\infty[$ converge uniformément sur \mathbb{R}	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
Question 2 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge simplement sur $[1,+\infty[$ converge uniformément sur $[1,2]$	$(f_n)_{n\geqslant 0}$:) = nxe^{-nx} . Alors, la suite $(f_n)_{n\geqslant 0}$
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
converge uniformément sur $[a,1]$ $(a \in]0,1[)$ converge simplement sur $[0,1]$ vers une fonct converge uniformément sur $[0,a]$ $(a \in]0,1[)$	tion constante
Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_p(x) < \epsilon$ $\in A, f_n(x) - f_p(x) < \epsilon$ $> n_0, f_n(x) - f_{n_0}(x) < \epsilon$

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{bmatrix} 5 \\ \hline \end{bmatrix} 5 \begin{bmatrix} 5 \\ \hline \end{bmatrix} 6 \begin{bmatrix} 6 \\ \hline \end{bmatrix} 6 \begin{bmatrix} 6 \\ \hline \end{bmatrix} 6 \begin{bmatrix} 6 \\ \end{bmatrix} 6 \begin{bmatrix} 6 \\ $	
888888 99	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
☐ converge uniformément sur $[1,2]$ ☐ converge uniformément sur \mathbb{R} ☐ converge uniformément sur $]1,+\infty[$ ☐ converge uniformément sur $]0,+\infty[$	
Question 2 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\square converge uniformément sur $[1,2]$	
\square converge simplement sur $[1, +\infty[$	
converge uniformément sur [0,1]	
\square converge uniformément sur $[0, +\infty[$	
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_p(x) < \epsilon$
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	tion constante

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	← codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
☐ converge uniformément sur ℝ		
\square converge uniformément sur $[1,2]$		
\sqsubseteq converge uniformément sur $]1, +\infty[$		
\square converge uniformément sur $]0, +\infty[$		
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$		
\Box converge uniformément sur $[a,1]$ $(a \in]0,1[)$		
converge simplement sur [0, 1] vers une fonct	tion constante	
Question 3 • Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$\in A, f_n(x) - f_p(x) < \epsilon$	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
Question 4 ♣		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	e^{-nx} . Alors, la suite $(f_n)_{n\geqslant 0}$	
\Box converge simplement sur $[1, +\infty[$		
\Box converge uniformément sur $[0, +\infty[$		
converge uniformément sur [0, 1]		
converge uniformément sur [1, 2]		

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2	
	godoz votro numéro d'étudient ai	
	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
\Box converge uniformément sur $]0, +\infty[$		
converge uniformément sur [1, 2]		
\square converge uniformément sur \mathbb{R}		
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge uniformément sur $[0,a]$ $(a \in]0,1[)$		
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$		
\square converge simplement sur $[0,1]$ vers une fonct	tion constante	
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$	
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $		
Question 4 ♣		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
\Box converge simplement sur $[1, +\infty[$		
\square converge uniformément sur $[1,2]$		
\Box converge uniformément sur $[0, +\infty[$		
converge uniformément sur [0, 1[

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
converge uniformément sur [1, 2]	
\Box converge uniformément sur $[0, +\infty[$	
converge uniformément sur [0, 1]	
\square converge simplement sur $[1, +\infty[$	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	ion constante
\square converge uniformément sur $[0,a]$ $(a\in]0,1[)$	
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
	$> n_0, J_n(x) - J_p(x) < \epsilon$
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
$\hfill \Box$ converge uniformément sur]1, $+\infty[$	
\square converge uniformément sur $[1,2]$	
\square converge uniformément sur $\mathbb R$	
\Box converge uniformément sur $]0, +\infty[$	

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
	Les esses deivent être complètement neir
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $]1, +\infty[$	
converge uniformément sur [1, 2]	
\square converge uniformément sur $\mathbb R$	
Question 2 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(r) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
\square converge uniformément sur $[1,2]$	
\Box converge simplement sur $[1, +\infty[$	
converge uniformément sur [0, 1]	
\Box converge uniformément sur $[0, +\infty[$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	cion constante
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$	
Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \exists \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x $	$\in A, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
$ \begin{bmatrix} 5 \\ \hline \end{bmatrix} 5 \begin{bmatrix} 5 \\ \hline \end{bmatrix} 6 \begin{bmatrix} 6 \\ \hline \end{bmatrix} 6 \begin{bmatrix} 6 \\ \hline \end{bmatrix} 6 \begin{bmatrix} 6 \\ \end{bmatrix} 6 \begin{bmatrix} 6 \\ $		
	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
\square converge uniformément sur $[1,2]$		
Question 2 ♣		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
converge uniformément sur [0, 1]		
converge uniformément sur [1, 2]		
\square converge uniformément sur $[0, +\infty[$		
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge simplement sur $[0,1]$ vers une fonc	tion constante	
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$		

0 0	QCM3L Suites de Fonctions Préing2 ← codez votre numéro d'étudiant cicontre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom : Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[1,2]$ converge uniformément sur $[0,+\infty[$ converge uniformément sur $[0,1[$ converge simplement sur $[1,+\infty[$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$ \begin{aligned} &\in A, f_n(x) - f_p(x) < \epsilon \\ &> n_0, f_n(x) - f_p(x) < \epsilon \\ &> n_0, f_n(x) - f_p(x) < \epsilon \end{aligned} $
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
converge uniformément sur $]0, +\infty[$ converge uniformément sur \mathbb{R} converge uniformément sur $]1, +\infty[$ converge uniformément sur $[1, 2]$	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
converge uniformément sur $[0, a]$ $(a \in]0, 1[)$ converge simplement sur $[0, 1]$ vers une fonction converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$	tion constante

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
555555555	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_p(x) < \epsilon$ $> n_0, f_n(x) - f_p(x) < \epsilon$ $> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
☐ converge uniformément sur $[0,a]$ $(a \in]0,1[)$ ☐ converge simplement sur $[0,1]$ vers une fonct ☐ converge uniformément sur $[a,1]$ $(a \in]0,1[)$	tion constante
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
Question 4 &	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
☐ converge uniformément sur $[0, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐	
converge uniformément sur $[1,2]$ converge simplement sur $[1,+\infty[$	

	QCM3L Suites de Fonctions Préing2	
1 1	← codez votre numéro d'étudiant cicontre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom : Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
	tion constante	
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
Question 4 ♣		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
☐ converge uniformément sur $[0, +\infty[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, 1[$		

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR. e convergence uniforme d'une suite de fonctions
	• • • • •
	* * * * * * * * * * * * * * * * * * * *
	• • • • • • • • • • • • • • • • • • • •
Question 2 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[1,2]$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\square converge uniformément sur $[1,2]$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\square converge uniformément sur $[1,2]$ \square converge uniformément sur $[0,1[$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
☐ converge uniformément sur $[1,2]$ ☐ converge uniformément sur $[0,1[$ ☐ converge simplement sur $[1,+\infty[$ ☐ converge uniformément sur $[0,+\infty[$	$f(x)=nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$ une définies par $f_n(x)=ne^{-n^2x^2}$. Alors, la suite
☐ converge uniformément sur $[1,2]$ ☐ converge uniformément sur $[0,1[$ ☐ converge simplement sur $[1,+\infty[$ ☐ converge uniformément sur $[0,+\infty[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction	
☐ converge uniformément sur $[1,2]$ ☐ converge uniformément sur $[0,1[$ ☐ converge simplement sur $[1,+\infty[$ ☐ converge uniformément sur $[0,+\infty[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	
□ converge uniformément sur $[1,2]$ □ converge uniformément sur $[0,1[$ □ converge simplement sur $[1,+\infty[$ □ converge uniformément sur $[0,+\infty[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ □ converge uniformément sur $[1,+\infty[$	
□ converge uniformément sur $[1,2]$ □ converge uniformément sur $[0,1[$ □ converge simplement sur $[1,+\infty[$ □ converge uniformément sur $[0,+\infty[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ □ converge uniformément sur $[1,+\infty[$ □ converge uniformément sur $[1,+\infty[$ □ converge uniformément sur $[1,+\infty[$	
□ converge uniformément sur $[1,2]$ □ converge uniformément sur $[0,1[$ □ converge simplement sur $[1,+\infty[$ □ converge uniformément sur $[0,+\infty[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ □ converge uniformément sur $[1,+\infty[$ □ converge uniformément sur $[1,2]$	
□ converge uniformément sur $[1,2]$ □ converge uniformément sur $[0,1[$ □ converge simplement sur $[1,+\infty[$ □ converge uniformément sur $[0,+\infty[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ □ converge uniformément sur $[1,+\infty[$ □ converge uniformément sur $[1,2]$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
□ converge uniformément sur $[1,2]$ □ converge uniformément sur $[0,1[$ □ converge simplement sur $[1,+\infty[$ □ converge uniformément sur $[0,+\infty[$ Question 3 ♣ Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ □ converge uniformément sur $[1,+\infty[$ □ converge uniformément sur $[1,+\infty[$ □ converge uniformément sur $[0,+\infty[$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
888888 99	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
converge simplement sur $[0,1]$ vers une fonct converge uniformément sur $[0,a]$ $(a \in]0,1[)$ converge uniformément sur $[a,1]$ $(a \in]0,1[)$	tion constante
Question 3 4	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[0, +\infty[$	
Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$\in A, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_p(x) < \epsilon $	
$ \exists x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_{n_0}(x) < \epsilon $	
	$> n_0, f_n(x) - f_p(x) < \epsilon$

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
8888888	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
☐ converge uniformément sur \mathbb{R} ☐ converge uniformément sur $]1, +\infty[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $]0, +\infty[$	
Question 2 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
\square converge uniformément sur $[0,1[$	
converge uniformément sur [1, 2]	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonc	tion constante
Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	• • • • •

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
$\square_2 \square_2 \square_2 \square_2 \square_2 \square_2 \square_2 \square_2 \square_2$	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
	I
	Les cases doivent être complètement noircies avec un stylo NOIR.
	•
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x $	$\in A, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $]0, +\infty[$	
\square converge uniformément sur $\mathbb R$	
\square converge uniformément sur $]1, +\infty[$	
converge uniformément sur [1, 2]	
Converge uniformement sur [1,2]	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	cion constante
$\hfill \square$ converge uniformément sur $[a,1]$ $(a\in]0,1[)$	
Question 4 &	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
$\hfill \Box$ converge uniformément sur $[0,+\infty[$	
\Box converge simplement sur $[1, +\infty[$	
converge uniformément sur [1, 2]	

	QCM3L Suites de Fonctions Préing2
	\leftarrow codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
$\boxed{5} \boxed{5} \boxed{5} \boxed{5} \boxed{5} \boxed{5} \boxed{5} \boxed{5}$	
8888888 999999	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $\mathbb R$	
\square converge uniformément sur $]1, +\infty[$	
\square converge uniformément sur $[1,2]$	
$\hfill \Box$ converge uniformément sur $]0,+\infty[$	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
$\hfill \square$ converge uniformément sur $[0,a]\ (a\in]0,1[)$	
\square converge simplement sur $[0,1]$ vers une fonct	tion constante
Question 3 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\square converge uniformément sur $[1,2]$	
\Box converge uniformément sur $[0, +\infty[$	
\Box converge simplement sur $[1, +\infty[$	
$\hfill \Box$ converge uniformément sur $[0,1[$	
Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \exists \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_p(x) < \epsilon $	
$ \exists \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_p(x) < \epsilon $	
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_{n_0}(x) < \epsilon $	
	$\in A, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
☐ converge uniformément sur $[1,2]$ ☐ converge simplement sur $[1,+\infty[$ ☐ converge uniformément sur $[0,1[$ ☐ converge uniformément sur $[0,+\infty[$	
	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$\in A, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	cion constante
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $]0, +\infty[$	
\square converge uniformément sur $[1,2]$	
\square converge uniformément sur $\mathbb R$	
$\hfill \Box$ converge uniformément sur $]1,+\infty[$	

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :
7 7	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
☐ converge uniformément sur]1, +∞[☐ converge uniformément sur]0, +∞[☐ converge uniformément sur [1,2] ☐ converge uniformément sur \mathbb{R}	
Question 2 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
☐ converge uniformément sur $[1,2]$ ☐ converge uniformément sur $[0,1[$ ☐ converge simplement sur $[1,+\infty[$ ☐ converge uniformément sur $[0,+\infty[$	
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$ $> n_0, f_n(x) - f_p(x) < \epsilon$ $> n_0, f_n(x) - f_p(x) < \epsilon$
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
□ converge simplement sur $[0,1]$ vers une fonct □ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ □ converge uniformément sur $[0,a]$ $(a \in]0,1[)$	tion constante

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
\square_2 \square_2 \square_2 \square_2 \square_2 \square_2 \square_2 \square_2	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
converge uniformément sur [0, 1[
converge uniformément sur [1, 2]	
converge unnormement sur [0, +∞[
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$	
converge uniformément sur $[0, a]$ $(a \in]0, 1[)$	
converge simplement sur [0,1] vers une fonct	tion constante
	2_2
Question 3 Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $[1,2]$	
\Box converge uniformément sur $]0, +\infty[$	
converge uniformément sur R	
converge uniformément sur $]1, +\infty[$	
Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_n(x) < \epsilon$
	$\in A, f_n(x) - f_p(x) < \epsilon$

0 0	QCM3L Suites de Fonctions Préing2 ← codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom : Les cases doivent être complètement noir-
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction converge simplement sur $[0,1]$ vers une fonc	cies avec un stylo NOIR. as définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$ etion constante
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ Converge uniformément sur \mathbb{R} converge uniformément sur $[1,2]$ converge uniformément sur $[0,+\infty[$ converge uniformément sur $[1,+\infty[$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
	de convergence uniforme d'une suite de fonctions
	$\begin{aligned} & > n_0, f_n(x) - f_p(x) < \epsilon \\ & > n_0, f_n(x) - f_{n_0}(x) < \epsilon \\ & > n_0, f_n(x) - f_p(x) < \epsilon \end{aligned}$
Question 4 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge simplement sur $[1,+\infty[$ converge uniformément sur $[1,2]$ converge uniformément sur $[0,+\infty[$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{bmatrix} 6 \\ \hline 6 \end{bmatrix} \begin{bmatrix} 6 \\ \hline \end{bmatrix} \begin{bmatrix} 6 \\ \end{bmatrix} \begin{bmatrix}$	
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$\in A, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
Question 2 ♣	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge simplement sur $[1,+\infty[$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge simplement sur $[1,+\infty[$ converge uniformément sur $[1,2]$	$f(x)=nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$ us définies par $f_n(x)=ne^{-n^2x^2}$. Alors, la suite
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge simplement sur $[1,+\infty[$ converge uniformément sur $[1,2]$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge simplement sur $[1,+\infty[$ converge uniformément sur $[1,2]$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge simplement sur $[1,+\infty[$ converge uniformément sur $[1,2]$ Question 3 & Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur \mathbb{R}	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ \square converge uniformément sur $[0,1[$ \square converge uniformément sur $[0,+\infty[$ \square converge simplement sur $[1,+\infty[$ \square converge uniformément sur $[1,2]$ Question 3 \blacktriangleleft Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ \square converge uniformément sur \mathbb{R} \square converge uniformément sur $[1,2]$	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge simplement sur $[1,+\infty[$ converge uniformément sur $[1,2]$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur \mathbb{R} converge uniformément sur $[1,2]$ converge uniformément sur $[1,2]$ converge uniformément sur $[1,+\infty[$ converge uniformément sur $[1,+\infty[$ converge uniformément sur $[0,+\infty[$	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge simplement sur $[1,+\infty[$ converge uniformément sur $[1,2]$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur \mathbb{R} converge uniformément sur $[1,2]$ converge uniformément sur $[1,2]$ converge uniformément sur $[1,+\infty[$ converge uniformément sur $[1,+\infty[$ converge uniformément sur $[0,+\infty[$	ns définies par $f_n(x)=ne^{-n^2x^2}$. Alors, la suite s définies par $f_n(x)=x^n$. Alors, la suite $(f_n)_n$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$ converge uniformément sur $[0,+\infty[$ converge simplement sur $[1,+\infty[$ converge uniformément sur $[1,2]$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur \mathbb{R} converge uniformément sur $[1,2]$ converge uniformément sur $[1,2]$ converge uniformément sur $[1,2]$ converge uniformément sur $[1,+\infty[$ converge uniformément sur $[0,+\infty[$ Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions	ns définies par $f_n(x)=ne^{-n^2x^2}$. Alors, la suite s définies par $f_n(x)=x^n$. Alors, la suite $(f_n)_n$

	QCM3L Suites de Fonctions Préing2
	\leftarrow codez votre numéro d'étudiant ci-
$\square 2 \square 2$	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	T 1. (A) 1N (A)
	Les cases doivent être complètement noircies avec un stylo NOIR.
	cles avec an style recite.
Question 1 &	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\Box converge simplement sur $[1, +\infty[$	
converge uniformément sur [1, 2]	
converge uniformément sur [0, 1]	
converge uniformément sur $[0, +\infty[$	
Converge uniformement sur [0, +∞[
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	tion constante
Converge uniformément sur $[a,1]$ $(a\in]0,1[)$	
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$ > n_0, f_n(x) - f_{n_0}(x) < \epsilon $
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	
	$> n_0, f_n(x) - f_p(x) < \epsilon$
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
converge uniformément sur [1, 2]	
converge uniformément sur R	
converge uniformément sur $]1, +\infty[$	
converge uniformément sur $]0, +\infty[$	
□ converge annormement sur ju, ⊤∞[

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{bmatrix} 6 & \boxed{6} & \boxed{6} & \boxed{6} & \boxed{6} & \boxed{6} \end{bmatrix} $ $ \begin{bmatrix} 7 & \boxed{7} & \boxed{7} & \boxed{7} & \boxed{7} & \boxed{7} \end{bmatrix} $	
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonct	tion constante
\Box converge uniformément sur $[0, a]$ $(a \in]0, 1[)$	
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$	
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
	• • • • • • • • • • • • • • • • • • • •
Question 3 ♣	, 10 · · · · · · · · · · · · · · · · · ·
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$x = nxe^{-nx}$. Alors, la suite $(f_n)_{n \ge 0}$
\square converge simplement sur $[1, +\infty[$ \square converge uniformément sur $[0, +\infty[$	
converge uniformément sur [1, 2]	
converge uniformément sur [0, 1]	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $[1,2]$	
\square converge uniformément sur $]0, +\infty[$	
\Box converge uniformément sur $]1, +\infty[$	
\square converge uniformément sur $\mathbb R$	

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
\square converge uniformément sur $[0, +\infty[$	
converge uniformément sur [0, 1]	
converge uniformément sur [1, 2]	
converge amnormement our [1,2]	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\Box converge uniformément sur $[a,1]$ $(a \in]0,1[)$	
converge simplement sur [0, 1] vers une fonct	ion constante
	2 2
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	s définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
converge uniformément sur [1, 2]	
converge uniformément sur $]1, +\infty[$	
converge uniformément sur R	
converge uniformément sur $]0, +\infty[$	
	e convergence uniforme d'une suite de fonctions
	$> n$, $ f(x) < \epsilon$
	$\in A, f_n(x) - f_p(x) < \epsilon$

	QCM3L Suites de Fonctions Préing2
1 1	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom : Les cases doivent être complètement noir-
9 9 9 9 9 9 9 9 9	cies avec un stylo NOIR.
Question 1 Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
☐ converge uniformément sur]1, +∞[☐ converge uniformément sur]0, +∞[☐ converge uniformément sur \mathbb{R} ☐ converge uniformément sur [1, 2]	
Question 2 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[0,1[$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\square converge uniformément sur $[0,1[$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[0, +\infty[$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
☐ converge uniformément sur $[0,1[$ ☐ converge uniformément sur $[0,+\infty[$ ☐ converge uniformément sur $[1,2]$ ☐ converge simplement sur $[1,+\infty[$	$f(x)=nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$ de convergence uniforme d'une suite de fonctions
☐ converge uniformément sur $[0,1[$ ☐ converge uniformément sur $[0,+\infty[$ ☐ converge uniformément sur $[1,2]$ ☐ converge simplement sur $[1,+\infty[$ Question 3 ♣ Quel est le critère de Cauchy d	e convergence uniforme d'une suite de fonctions
☐ converge uniformément sur $[0,1[$ ☐ converge uniformément sur $[0,+\infty[$ ☐ converge uniformément sur $[1,2]$ ☐ converge simplement sur $[1,+\infty[$ Question 3 ♣ Quel est le critère de Cauchy définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions $0>n_0, f_n(x)-f_{n_0}(x) <\epsilon$
□ converge uniformément sur $[0,1[$ □ converge uniformément sur $[0,+\infty[$ □ converge uniformément sur $[1,2]$ □ converge simplement sur $[1,+\infty[$ Question 3 ♣ Quel est le critère de Cauchy définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} : □ $\forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p$	e convergence uniforme d'une suite de fonctions $0>n_0, f_n(x)-f_{n_0}(x) <\epsilon$ $0>n_0, f_n(x)-f_p(x) <\epsilon$
	te convergence uniforme d'une suite de fonctions $0 > n_0, f_n(x) - f_{n_0}(x) < \epsilon$ $0 > n_0, f_n(x) - f_p(x) < \epsilon$ $0 > n_0, f_n(x) - f_p(x) < \epsilon$ $0 > n_0, f_n(x) - f_p(x) < \epsilon$
	e convergence uniforme d'une suite de fonctions $0 > n_0, f_n(x) - f_{n_0}(x) < \epsilon$ $0 > n_0, f_n(x) - f_p(x) < \epsilon$
	e convergence uniforme d'une suite de fonctions $0 > n_0, f_n(x) - f_{n_0}(x) < \epsilon$ $0 > n_0, f_n(x) - f_p(x) < \epsilon$
	te convergence uniforme d'une suite de fonctions $\begin{aligned} & > n_0, f_n(x) - f_{n_0}(x) < \epsilon \\ & > n_0, f_n(x) - f_p(x) < \epsilon \\ & > n_0, f_n(x) - f_p(x) < \epsilon \\ & > n_0, f_n(x) - f_p(x) < \epsilon \\ & > n_0, f_n(x) - f_p(x) < \epsilon \end{aligned}$ $& < > < < < < < > < < < < < < < < < < < $
□ converge uniformément sur $[0,1[$ □ converge uniformément sur $[0,+\infty[$ □ converge uniformément sur $[1,2]$ □ converge simplement sur $[1,+\infty[$ Question 3 ♣ Quel est le critère de Cauchy d'définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} : □ $\forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p$ □ $\forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p$ □ $\forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p$ □ $\forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p$ □ $\forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p$ □ $\forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x$ Question 4 ♣ Soit $(f_n)_n$ une suite de fonction	te convergence uniforme d'une suite de fonctions $0 > n_0, f_n(x) - f_{n_0}(x) < \epsilon$ $0 > n_0, f_n(x) - f_p(x) < \epsilon$ as définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$

	QCM3L Suites de Fonctions Préing2		
1 1	codez votre numéro d'étudiant cicontre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom : Les cases doivent être complètement noircies avec un stylo NOIR.		
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite		
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions		
	$> n_0, f_n(x) - f_p(x) < \epsilon$		
Question 3 ♣			
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$		
□ converge uniformément sur $[1,2]$ □ converge uniformément sur $[0,+\infty[$ □ converge simplement sur $[1,+\infty[$ □ converge uniformément sur $[0,1[$			
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions	Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$		
☐ converge simplement sur $[0,1]$ vers une fonct ☐ converge uniformément sur $[0,a]$ $(a \in]0,1[)$ ☐ converge uniformément sur $[a,1]$ $(a \in]0,1[)$	tion constante		

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :	
	Les cases doivent être complètement noir-	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	cies avec un stylo NOIR. $\operatorname{ns} \operatorname{définies} \operatorname{par} f_n(x) = n e^{-n^2 x^2}. \text{ Alors, la suite}$	
Question 2	e convergence uniforme d'une suite de fonctions	
	-	
Question 3 \clubsuit	$> n_0, Jn(w) - Jp(w) < \varepsilon$	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
☐ converge uniformément sur $[1,2]$ ☐ converge uniformément sur $[0,+\infty[$ ☐ converge uniformément sur $[0,1[$ ☐ converge simplement sur $[1,+\infty[$		
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
☐ converge simplement sur $[0,1]$ vers une fonct ☐ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ ☐ converge uniformément sur $[0,a]$ $(a \in]0,1[)$	tion constante	

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{bmatrix} 5 \\ \hline \end{bmatrix} 5 \begin{bmatrix} 5 \\ \hline \end{bmatrix} 6 \begin{bmatrix} 6 \\ \hline \end{bmatrix} 6 \begin{bmatrix} 6 \\ \hline \end{bmatrix} 6 \begin{bmatrix} 6 \\ \end{bmatrix} 6 \begin{bmatrix} 6$	
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy definie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
	$\in A, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$
Question 2.	
Question 2 &	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[1,2]$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[1,2]$ converge uniformément sur $[0,1[$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[1,2]$ converge uniformément sur $[0,1[$ converge simplement sur $[1,+\infty[$ converge uniformément sur $[0,+\infty[$	$f(x)=nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$ us définies par $f_n(x)=ne^{-n^2x^2}$. Alors, la suite
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[1,2]$ converge uniformément sur $[0,1[$ converge simplement sur $[1,+\infty[$ converge uniformément sur $[0,+\infty[$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(a)$ converge uniformément sur $[1,2]$ converge uniformément sur $[0,1[$ converge simplement sur $[1,+\infty[$ converge uniformément sur $[0,+\infty[$ Question 3 & Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[1,2]$ converge uniformément sur $[0,1[$ converge simplement sur $[1,+\infty[$ converge uniformément sur $[0,+\infty[$ Question 3 & Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[1,+\infty[$	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ \square converge uniformément sur $[1,2]$ \square converge uniformément sur $[0,1[$ \square converge simplement sur $[1,+\infty[$ \square converge uniformément sur $[0,+\infty[$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ \square converge uniformément sur $[1,+\infty[$ \square converge uniformément sur $[1,2]$	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[1,2]$ converge uniformément sur $[0,1[$ converge simplement sur $[1,+\infty[$ converge uniformément sur $[0,+\infty[$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[1,+\infty[$ converge uniformément sur $[1,2]$	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[1,2]$ converge uniformément sur $[0,1[$ converge simplement sur $[1,+\infty[$ converge uniformément sur $[0,+\infty[$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[1,+\infty[$ converge uniformément sur $[1,2]$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ converge uniformément sur $[1,2]$ converge uniformément sur $[0,1[$ converge simplement sur $[1,+\infty[$ converge uniformément sur $[0,+\infty[$ Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$ converge uniformément sur $[1,+\infty[$ converge uniformément sur $[1,2]$ converge uniformément sur \mathbb{R} converge uniformément sur $[0,+\infty[$ Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction	ns définies par $f_n(x)=ne^{-n^2x^2}$. Alors, la suite s définies par $f_n(x)=x^n$. Alors, la suite $(f_n)_n$

	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
8888888	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
☐ converge simplement sur $[0,1]$ vers une fonct ☐ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ ☐ converge uniformément sur $[0,a]$ $(a \in]0,1[)$	tion constante	
Question 4 ♣		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
$\hfill \Box$ converge uniformément sur $[0,1[$		
$\hfill \Box$ converge uniformément sur $[1,2]$		
\square converge uniformément sur $[0, +\infty[$		
\Box converge simplement sur $[1, +\infty[$		

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
\square 7	
	T 1: 4 At 12
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $\mathbb R$	
\square converge uniformément sur $]1, +\infty[$	
converge uniformément sur [1, 2]	
$\hfill \Box$ converge uniformément sur $]0,+\infty[$	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge uniformément sur $[0,a]$ $(a\in]0,1[)$	
\square converge simplement sur $[0,1]$ vers une fonct	cion constante
$\hfill \Box$ converge uniformément sur $[a,1]\ (a\in]0,1[)$	
Question 3 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$r = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
\square converge uniformément sur $[1,2]$	
$\hfill \Box$ converge uniformément sur $[0,+\infty[$	
\Box converge simplement sur $[1, +\infty[$	
$\hfill \Box$ converge uniformément sur $[0,1[$	
Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
88888888 9999999	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$ > n_0, f_n(x) - f_{n_0}(x) < \epsilon $
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	• • • • •
	0,1000 y 0p()1
Question 2 &	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\Box converge simplement sur $[1, +\infty[$	
converge uniformément sur [0, 1]	
converge uniformément sur $[0, +\infty]$	
converge uniformément sur $[0, +\infty[$	
Converge uniformement sur [1, 2]	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
converge uniformément sur [1, 2]	
\square converge uniformément sur \mathbb{R}	
\square converge uniformément sur $]1, +\infty[$	
\square converge uniformément sur $]0, +\infty[$	
	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$	
converge simplement sur [0, 1] vers une fonct	ion constante

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci-	
	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
\square converge uniformément sur $]1, +\infty[$		
converge uniformément sur $]0, +\infty[$		
converge uniformément sur [1, 2]		
\square converge uniformément sur \mathbb{R}		
□ converge uniformement sur ℝ		
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$ > n_0, f_n(x) - f_{n_0}(x) < \epsilon $	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$		
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$		
\Box converge simplement sur $[0,1]$ vers une fonct	tion constante	
Question 4 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
\square converge uniformément sur $[0,1[$		
$\hfill \Box$ converge uniformément sur $[0,+\infty[$		
$\hfill \Box$ converge uniformément sur $[1,2]$		
\Box converge simplement sur $[1, +\infty[$		

	QCM3L Suites de Fonctions Préing2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
$\ \ \ \ \ \ \ \ \ \ \ \ \ $	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
\square converge uniformément sur $[0,1[$ \square converge uniformément sur $[1,2]$	
\square converge simplement sur $[1, +\infty[$	
converge uniformément sur $[0, +\infty[$	
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_n(x) < \epsilon$
	* * * * * * * * * * * * * * * * * * * *
	* * * * * * * * * * * * * * * * * * * *
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
<u></u>	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$	
\square converge simplement sur $[0,1]$ vers une fonct	ion constante
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$	
	s définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $]0, +\infty[$	
\square converge uniformément sur $]1, +\infty[$	
converge uniformément sur [1,2]	
\square converge uniformément sur $\mathbb R$	

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom :
	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
☐ converge uniformément sur $[a,1]$ $(a \in]0,1[)$ ☐ converge simplement sur $[0,1]$ vers une fonct ☐ converge uniformément sur $[0,a]$ $(a \in]0,1[)$	tion constante
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $]1,+\infty[$	
\square converge uniformément sur $]0, +\infty[$	
\square converge uniformément sur $[1,2]$	
$\hfill \Box$ converge uniformément sur $\mathbb R$	
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$
	$\in A, f_n(x) - f_p(x) < \epsilon$
$ \exists \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
Question 4 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\Box converge simplement sur $[1, +\infty[$	
$\hfill \Box$ converge uniformément sur $[0,+\infty[$	
$\hfill \Box$ converge uniformément sur $[1,2]$	
$\hfill \Box$ converge uniformément sur $[0,1[$	

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci-	
	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
	Les cases doivent être complètement noir-	
	cies avec un stylo NOIR.	
Question 1 ♣		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
\Box converge simplement sur $[1, +\infty[$		
converge uniformément sur [1, 2]		
converge uniformément sur [0, 1]		
converge uniformément sur $[0, +\infty[$		
□ converge uniformement sur [0, +∞[
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
\square converge uniformément sur $]1, +\infty[$		
\square converge uniformément sur $[1,2]$		
\Box converge uniformément sur $]0, +\infty[$		
\square converge uniformément sur $\mathbb R$		
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0 f(x) - f(x) < \epsilon$	
$ \forall \epsilon > 0, \forall x \in \Pi, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $ $ \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x $		
	$ > n_0, f_n(x) - f_{n_0}(x) < \epsilon $	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge simplement sur $[0,1]$ vers une fonct	cion constante	
$\hfill \Box$ converge uniformément sur $[a,1]$ $(a\in]0,1[)$		

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
	Nom et prénom :
$\square 5$	
8888888 999999	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $]1, +\infty[$	
\square converge uniformément sur $]0, +\infty[$	
\square converge uniformément sur \mathbb{R}	
converge uniformément sur [1, 2]	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
$\hfill \Box$ converge uniformément sur $[0,a]\ (a\in]0,1[)$	
$\hfill \Box$ converge uniformément sur $[a,1]$ $(a\in]0,1[)$	
\square converge simplement sur $[0,1]$ vers une fonct	tion constante
Question 3 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
\Box converge simplement sur $[1, +\infty[$	
$\hfill \Box$ converge uniformément sur $[0,1[$	
$\hfill \Box$ converge uniformément sur $[0,+\infty[$	
$\hfill \Box$ converge uniformément sur $[1,2]$	
Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \exists x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_p(x) < \epsilon $	
$ \exists x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_{n_0}(x) < \epsilon $	
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$\in A, f_n(x) - f_p(x) < \epsilon$
	$> n_0, f_n(x) - f_p(x) < \epsilon$

	— codez votre numéro d'étudiant ciontre, et inscrivez votre nom et prénom dessous (le NOM d'abord!). Nom et prénom :
9999999ci	es cases doivent être complètement noir- les avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonctions d converge simplement sur $[0,1]$ vers une fonction converge uniformément sur $[0,a]$ $(a \in]0,1[)$ converge uniformément sur $[a,1]$ $(a \in]0,1[)$	éfinies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$ n constante
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions $(f_n)_n$	définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
Question 3 $\ \ \ \ \ \ \ \ \ $ Quel est le critère de Cauchy de codéfinie sur $A\subset\mathbb{R}$ à valeurs dans \mathbb{R} :	onvergence uniforme d'une suite de fonctions
	$A, f_n(x) - f_p(x) < \epsilon$ $n_0, f_n(x) - f_p(x) < \epsilon$ $n_0, f_n(x) - f_p(x) < \epsilon$
Question 4 🌲	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$ =	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
☐ converge uniformément sur $[0, +\infty[$ ☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[1, 2]$	

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci-
	contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
	T 1. 4.54 154 4 .
	Les cases doivent être complètement noircies avec un stylo NOIR.
	oles avec an stylo rvorit.
Question 1 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$c) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
converge uniformément sur [1, 2]	
\Box converge simplement sur $[1, +\infty[$	
\square converge uniformément sur $[0,1[$	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $]1, +\infty[$	
\square converge uniformément sur \mathbb{R}	
converge uniformément sur [1, 2]	
converge uniformément sur $]0, +\infty[$	
□ converge uniformement sur]0, +∞[
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$ J_n(x)-J_p(x) <\epsilon$
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge simplement sur $[0,1]$ vers une fonc	tion constante

	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci-	
	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
555555		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
8888888	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge simplement sur $[0,1]$ vers une fonct	ion constante	
$\hfill \square$ converge uniformément sur $[0,a]\ (a\in]0,1[)$		
$\hfill \Box$ converge uniformément sur $[a,1]\ (a\in]0,1[)$		
Question 2 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$\in A, f_n(x) - f_p(x) < \epsilon$	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
$ \exists x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0, f_n(x) - f_p(x) < \epsilon $		
$ \exists x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	is définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
\square converge uniformément sur $\mathbb R$		
\square converge uniformément sur $[1,2]$		
$\hfill \Box$ converge uniformément sur]1, +\infty[
\square converge uniformément sur $]0, +\infty[$		
Question 4 &		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
$\hfill \Box$ converge uniformément sur $[0,+\infty[$		
$\hfill \Box$ converge uniformément sur $[0,1[$		
$\hfill \Box$ converge uniformément sur $[1,2]$		
\Box converge simplement sur $[1, +\infty[$		

	QCM3L Suites de Fonctions Préing2	
	onder vetre numéro d'étudient ei	
	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
	T 1	
	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	is définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
\square converge uniformément sur $]0, +\infty[$		
\square converge uniformément sur \mathbb{R}		
converge uniformément sur [1, 2]		
\square converge uniformément sur $]1, +\infty[$		
Question 2 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
converge uniformément sur [0, 1]		
converge uniformément sur $[0, +\infty[$		
converge uniformément sur [1, 2]		
\square converge simplement sur $[1, +\infty[$		
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge simplement sur $[0,1]$ vers une fonct	ion constante	
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$		
Question 4 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
$ \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p > n_0 \forall x $	$\in A, f_n(x) - f_p(x) < \epsilon$	
$\forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, n \in \mathbb{N}, n > n_0, n$		
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
	$ > n_0, f_n(x) - f_p(x) < \epsilon $ $ > n_0, f_n(x) - f_p(x) < \epsilon $	

	QCM3L Suites de Fonctions Préing2
	← codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom
	ci-dessous (le NOM d'abord!).
	Nom et prénom :
	Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
	v
Question 1 &	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$f(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$
\Box converge simplement sur $[1, +\infty[$	
converge uniformément sur [1, 2]	
\square converge uniformément sur $[0, +\infty[$	
\square converge uniformément sur $[0,1[$	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonction	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
\square converge uniformément sur $[a,1]$ $(a \in]0,1[)$	
converge uniformément sur $[0, a]$ $(a \in]0, 1[)$	
	tion constants
\square converge simplement sur $[0,1]$ vers une fonct	tion constante
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$
	$> n_0, J_n(x) - J_p(x) < \epsilon$
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
\square converge uniformément sur $\mathbb R$	
converge uniformément sur [1, 2]	
\square converge uniformément sur $]0, +\infty[$	

	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci-	
$\square 2 \square 2$	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!). Nom et prénom :	
	Nom et prenom .	
	Les cases doivent être complètement noir-	
	cies avec un stylo NOIR.	
Question 1 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
\Box converge simplement sur $[1, +\infty[$		
converge uniformément sur [0, 1[
converge uniformément sur $[0, +\infty[$		
converge uniformément sur [1, 2]		
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$		
converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$		
converge simplement sur [0, 1] vers une fonct	tion constante	
converge simplement sur [0, 1] vers une fonce	John Collisionice	
Question 3 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
	$ > n_0, f_n(x) - f_{n_0}(x) < \epsilon $	
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $		
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
\square converge uniformément sur $[1,2]$		
$\hfill \Box$ converge uniformément sur $\mathbb R$		
$\hfill \Box$ converge uniformément sur $]1,+\infty[$		

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci-	
	contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
88888888 9999999	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions	
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$	
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$	
	$\in A, f_n(x) - f_p(x) < \epsilon$	
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$	
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$		
Converge uniformément sur $[a,1]$ $(a\in]0,1[)$		
\square converge simplement sur $[0,1]$ vers une fonct	cion constante	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
\Box converge uniformément sur $]0, +\infty[$		
$\hfill \Box$ converge uniformément sur]1, +\infty[
\square converge uniformément sur $\mathbb R$		
$\hfill \Box$ converge uniformément sur $[1,2]$		
Question 4 &		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
\square converge uniformément sur $[1,2]$		
\Box converge simplement sur $[1, +\infty[$		
\square converge uniformément sur $[0,1[$		
$\hfill \Box$ converge uniformément sur $[0,+\infty[$		

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!). Nom et prénom :	
$\boxed{5} \boxed{5} \boxed{5} \boxed{5} \boxed{5} \boxed{5} \boxed{5} \boxed{5}$		
88888888 9999999	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	convergence uniforme d'une suite de fonctions	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
$ \exists \forall x \in A, \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$	
	* * * * * * * * * * * * * * * * * * * *	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$		
\square converge simplement sur $[0,1]$ vers une fonct	ion constante	
$\hfill \Box$ converge uniformément sur $[a,1]\ (a\in]0,1[)$		
Question 3 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$= nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
$\hfill \Box$ converge uniformément sur $[0,1[$		
\square converge uniformément sur $[0, +\infty[$		
converge uniformément sur [1, 2]		
\square converge simplement sur $[1, +\infty[$		
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	s définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
\square converge uniformément sur $\mathbb R$		
$\hfill \Box$ converge uniformément sur $[1,2]$		
\square converge uniformément sur $]0, +\infty[$		
\square converge uniformément sur $]1, +\infty[$		

	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci-	
	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
	Les cases doivent être complètement noir-	
	cies avec un stylo NOIR.	
Question 1 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$	
converge uniformément sur [0, 1[
converge uniformément sur $[0, +\infty[$		
converge uniformément sur [1, 2]		
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge simplement sur $[0,1]$ vers une fonct	tion constante	
\square converge uniformément sur $[0,a]$ $(a \in]0,1[)$		
Question 3 \clubsuit Quel est le critère de Cauchy de convergence uniforme d'une suite de fonctions définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :		
$ \forall \epsilon > 0, \forall x \in A, \exists n_0 \in \mathbb{N}, \forall n, p \in \mathbb{N}, n > n_0, p $	$> n_0, f_n(x) - f_p(x) < \epsilon$	
	$> n_0, f_n(x) - f_{n_0}(x) < \epsilon$	
Question 4 Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
$\hfill \Box$ converge uniformément sur $]1,+\infty[$		
$\hfill \Box$ converge uniformément sur $\mathbb R$		
\square converge uniformément sur $]0, +\infty[$		
\square converge uniformément sur $[1,2]$		

\square_0 \square_0 \square_0 \square_0 \square_0 \square_0 \square_0	QCM3L Suites de Fonctions Préing2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	Les cases doivent être complètement noircies avec un stylo NOIR.	
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
$\hfill \Box$ converge uniformément sur $]1,+\infty[$		
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
☐ converge uniformément sur $[0, a]$ $(a ∈]0, 1[)$ ☐ converge simplement sur $[0, 1]$ vers une fonction constante		
converge uniformément sur $[a,1]$ $(a ∈]0,1[)$ Question 3 ♣ Quel est le critère de Cauchy de convergence uniforme d'une suite de fonctions définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :		
	$> n_0, f_n(x) - f_n(x) < \epsilon$	
	* * * * * * * * * * * * * * * * * * * *	
	$\in A, f_n(x) - f_p(x) < \epsilon$	
Question 4 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
$\hfill \Box$ converge uniformément sur $[0,1[$		
\square converge simplement sur $[1, +\infty[$		
$\hfill \Box$ converge uniformément sur $[0,+\infty[$		
\square converge uniformément sur $[1,2]$		

0 0	QCM3L Suites de Fonctions Préing2 ← codez votre numéro d'étudiant cicontre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!). Nom et prénom : Les cases doivent être complètement noir-
	cies avec un stylo NOIR.
Question 1 \clubsuit Soit $(f_n)_n$ une suite de fonction	as définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$
converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$ converge simplement sur $[0, 1]$ vers une fonc	tion constante
\square converge uniformément sur $[0, a]$ $(a \in]0, 1[)$	
Question 2 ♣	
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n \geqslant 0}$
☐ converge simplement sur $[1, +\infty[$ ☐ converge uniformément sur $[1, 2]$ ☐ converge uniformément sur $[0, 1[$ ☐ converge uniformément sur $[0, +\infty[$	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite
Question 4 \clubsuit Quel est le critère de Cauchy d'définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions
	$e \in A, f_n(x) - f_p(x) < \epsilon$ $e > n_0, f_n(x) - f_p(x) < \epsilon$
	$0 > n_0, f_n(x) - f_p(x) < \epsilon$

	QCM3L Suites de Fonctions Préing2	
	← codez votre numéro d'étudiant ci-	
	contre, et inscrivez votre nom et prénom	
	ci-dessous (le NOM d'abord!).	
	Nom et prénom :	
\square 7		
	Les cases doivent être complètement noir-	
	cies avec un stylo NOIR.	
Question 1 • Quel est le critère de Cauchy de définie sur $A \subset \mathbb{R}$ à valeurs dans \mathbb{R} :	e convergence uniforme d'une suite de fonctions $ \int_{-\infty}^{\infty} A \left f_{n}(x) - f_{n}(x) \right \leq c $	
	* * * * * * * * * * * * * * * * * * * *	
	$> n_0, f_n(x) - f_p(x) < \epsilon$	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions	s définies par $f_n(x) = x^n$. Alors, la suite $(f_n)_n$	
\square converge simplement sur $[0,1]$ vers une fonct	tion constante	
Question 3 \clubsuit Soit $(f_n)_n$ une suite de fonction $(f_n)_n$	ns définies par $f_n(x) = ne^{-n^2x^2}$. Alors, la suite	
\square converge uniformément sur $\mathbb R$		
\square converge uniformément sur $]1,+\infty[$		
\square converge uniformément sur $]0,+\infty[$		
$\hfill \Box$ converge uniformément sur $[1,2]$		
Question 4 🌲		
Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x)$	$e(x) = nxe^{-nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
\Box converge simplement sur $[1, +\infty[$		
converge uniformément sur [0, 1[
converge uniformément sur $[0, +\infty[$		
converge uniformément sur [1, 2]		