	QCM3L Suites de Fonctions Préing2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	codez votre numéro d'étudiant ci- contre, et inscrivez votre nom et prénom ci-dessous (le NOM d'abord!).
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Les cases doivent être complètement noircies avec un stylo NOIR.
Question 1 \clubsuit On considère la suite de fonctions définies par $f_n(x) = \frac{nx}{1+nx}$. Alors, la suite $(f_n)_{n\geqslant 0}$	
converge uniformément sur $[1, +\infty[$ converge uniformément sur $[a, 1]$ $(a \in]0, 1[)$ converge simplement vers une fonction constante sur $[0, 1]$ converge uniformément sur $[0, 1]$	
Question 2 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies par $f_n(x) = \frac{\sin(nx)}{n!}$. Alors, la suite $(f_n)_n$ converge uniformément sur \mathbb{R} converge uniformément sur $]-\infty,0[$ converge uniformément sur $[0,2\pi]$ vers une fonction continue	
Question 3 \clubsuit On définit une suite de fonctions par $f_n(x) = x^2 \sin\left(\frac{1}{nx}\right)$ pour $x \in \mathbb{R}^*$ et	
$f_n(0) = 0$. Alors, la suite $(f_n)_{n \geqslant 0}$	
converge uniformément sur $[-2,2]$ converge uniformément sur $[0,+\infty[$ converge uniformément sur $[0,2]$ converge uniformément sur \mathbb{R}	
Question 4 \clubsuit Soit $(f_n)_n$ une suite de fonctions définies sur un ir les conditions nécessaires pour appliquer le théorè	
■ $\forall n \in \mathbb{N}$, la fonction f_n est de classe C^0 sur $[a,b]$ □ La suite de fonctions $(f'_n)_n$ converge uniformément sur $[a,b]$ vers une fonction g □ La suite de fonctions (f_n) converge uniformément sur $[a,b]$ vers une fonction f continue □ La suite $\left(\int_a^b f_n(x)dx\right)_n$ est convergente	