

# Cycle préparatoire 1ère année

## Devoir surveillé 5

Karam Fayad, Khaoula Guezguez, Jean-Michel Masereel

| Matière : Algèbre                              | Date: Vendredi 5 avril 2019 |
|------------------------------------------------|-----------------------------|
| Appareils électroniques et documents interdits | Durée : <b>2 heures</b>     |
|                                                | Nombre de pages : 2         |

# Il sera tenu compte de la qualité de la rédaction et de la précision des justifications.

Le sujet comporte quatre exercices. L'ordre dans lequel ceux-ci sont traités n'est pas imposé. Le barème est donné à titre indicatif.

## Exercice 1. (7.5 points)

Soit  $V = \{(4a, 2a, a, b), (a, b) \in \mathbb{R}^2\}$  et  $W = \{(x, y, z, t) \in \mathbb{R}^4, x + z = y + t\}$ .

- 1. Montrer que V et W sont des espaces vectoriels.
- 2. Donner une base et la dimension de V, W et  $V \cap W$ .
- 3. Montrer que  $\mathbb{R}^4 = V + W$ .

#### Exercice 2. (6 points)

Dans  $\mathbb{R}_3[X]$ , on note  $G = \{P \in \mathbb{R}_3[X], P(1) = P'(1) = 0\}$ , et on note  $F = \mathbb{R}_1[X]$ .

- 1. Montrer que G est un sous-espace vectoriel de  $\mathbb{R}_3[X]$ .
- 2. Montrer que G est de dimension 2 et que la famille  $((X-1)^2, (X-1)^3)$  en est une base.
- 3. Montrer que la famille (1, X 1) est une base de F.
- 4. Montrer que F et G sont supplémentaires dans  $\mathbb{R}_3[X]$ .
- 5. Soit le vecteur  $P = 1 + X + X^2 + X^3$ .
  - (a) Calculer les coordonnées de P dans la base  $(1, X-1, (X-1)^2, (X-1)^3)$  de  $\mathbb{R}_3[X]$ .
  - (b) En déduire la décomposition de P sur F + G.

## Exercice 3. (3 points)

En justifiant vos choix, donner dans chacun des cas suivants deux familles de vecteurs  $\mathscr{F}$  et  $\mathscr{F}'$  dans  $\mathbb{R}^3$  telles que :

- 1.  $\text{vect}(\mathcal{F})$  et  $\text{vect}(\mathcal{F}')$  sont en somme directe et ne sont pas supplémentaires dans  $\mathbb{R}^3$ .
- 2.  $\operatorname{vect}(\mathscr{F}) + \operatorname{vect}(\mathscr{F}') = \mathbb{R}^3$  et  $\operatorname{vect}(\mathscr{F})$  et  $\operatorname{vect}(\mathscr{F}')$  ne sont pas supplémentaires dans  $\mathbb{R}^3$ .
- 3.  $\text{vect}(\mathcal{F})$  et  $\text{vect}(\mathcal{F}')$  sont supplémentaires dans  $\mathbb{R}^3$ .

## Exercice 4. (6 points)

Soit E un  $\mathbb{K}$ -espace vectoriel et F et G deux sous-espaces vectoriels de E, de dimension finie. On propose de montrer la formule suivante, dite *formule de Grassmann*:

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G)$$
.

- 1. *Cas particulier*: on suppose dans cette question que F et G sont en somme directe. Soit  $m = \dim(F)$  et  $n = \dim(G)$ . On note  $(u_1, \dots, u_m)$  une base de F et  $(v_1, \dots, v_n)$  une base de G.
  - (a) Montrer que la famille  $(u_1, \dots, u_m, v_1, \dots, v_n)$  est une base de  $F \oplus G$ .
  - (b) En déduire la dimension de  $F \oplus G$  et la formule de Grassmann dans ce cas.

## 2. Cas général:

 $F \cap G$  étant un sous-espace vectoriel de F, on note H un supplémentaire de  $F \cap G$  dans F.

- (a) Donner la relation entre  $\dim(F)$ ,  $\dim(H)$  et  $\dim(F \cap G)$ .
- (b) Justifier que G et H sont des sous-espaces vectoriels de F + G.
- (c) Montrer que *G* et *H* sont en somme directe.
- (d) Montrer que F + G = G + H.
- (e) En déduire que G et H sont supplémentaires dans F + G.
- (f) Conclure.