

Préing 1 Devoir Surveillé 1 Algèbre II

L'usage de tout appareil électronique est interdit

Date: Jeudi 24 Janvier 2022

Durée: **1h30**

Nombre de pages: 2

Il sera tenu compte de la qualité de la rédaction et de la précision des justifications.

Le sujet comporte 5 exercices. L'ordre dans lequel ceux-ci sont traités n'est pas imposé.

 $\Diamond \Diamond \Diamond$

Exercice 1 [5 points]

- 1. Soit (G, \star) un groupe. Montrer que H est un sous-groupe de (G, \star) , si et seulement si, H est non vide et pour tout x, y éléments de $H, x^{-1} \star y \in H$.
- 2. On note U l'ensemble de $\mathbb C$ suivant :

$$U = \{z \in \mathbb{C}; |z| = 1\}$$

Montrer que (U,.) est un sous-groupe de $(\mathbb{C},.)$.

2.5 points

Solution

1. Soit H une partie de G. Supposons que H est un sous-groupe de (G, \star) . Alors H est un groupe. Soit $(x; y) \in H^2$ alors $x^{-1} \in H$, (car H est un groupe) et donc $x \star y^{-1} \in H$ car H est stable. De plus $e \in H$.

Réciproquement, supposons que pour tout $(x; y) \in H^2$, $x \star y^{-1} \in H$ et H non vide. Alors

Soit $x \in H$, alors $xx^{-1} \in H$ donc $e \in H$ et $ex^{-1} = x^{-1} \in H$. On en déduit que $xy = xy^{-1} \in H$ donc H est stable.

On a donc un ensemble non vide, stable par l'opération, qui contient l'élément neutre, les inversibles et la loi est associative donc (H, \star) est un groupe donc un sous-groupe.

2. Soit $(x, y) \in U$, alors l'inverse de y est $\frac{1}{y}$

On vérifie si xy^{-1} appartient à U:

$$|xy^{-1}| = \left|\frac{x}{y}\right| = \frac{|x|}{|y|} = \frac{1}{1} = 1$$

donc $xy^{-1} \in U$ donc U est un sous-groupe de \mathbb{C}

Autre méthode: 1 appartient U car |1|=1.

U est stable car pour $(x, y) \in U$, $|xy| = |x||y| = 1 \times 1 = 1$

De plus l'inverse de y, $\frac{1}{y}$ est tel que $\left|\frac{1}{y}\right| = \frac{1}{|y|} = 1$ donc $y^{-1} \in U$.

Donc U est un sous-groupe de \mathbb{C} , \times)

Autre méthode: module: $\frac{\mathbb{C} \to \mathbb{R}^*}{x \mapsto |z|}$ est un morphisme de groupe et U est le noyau de ce morphisme.

Exercice 2 [2 points]

Soit (G, \star) un groupe et soit $a \in G$, tel qu'il existe un entier n, tel que $a^{n+1} = a \star a \star a \cdots \star a = e$, avec e l'élément neutre de (G, \star) . On note A l'ensemble

$$A = \{e, a, a^2, ..., a^n\}$$

Montrer que (A, \star) est un groupe commutatif.

Solution

Soit $(c,d) \in G^2$, soit $(m,p) \in [0,n]^2$ tels que $c=a^m$ et $d=a^p$

alors
$$a^{-1} = a^{n+1-p}$$
 en effet $a^{n+1-p} = a^p a^{n+1-p} = a^{n+1} = e = a^{n+1-p} a$

On a donc $cd^{-1} = a^m a^{n+1-p} = a^{m+n+1-p}$

Or $0 \le m \le n$ et $0 \le p \le n$ donc $0 \le n - p \le n$ donc $0 \le m + n - p \le 2n$

Soit $k = m + n - p \le n$ et $cd^{-1} = a^k$ avec $k \in [0, n]$

Soit m + n - p > n et alors $k = (m + n - p) - n = m - p \in [0, n]$

Dans les deux cas $cd^{-1} \in A$

Enfin *A* est commutatif car $a^m a^p = a^{m+p} = a^{p+m} = a^p a^m$

Exercice 3 [6 points]

On note G l'ensemble de $\mathbb{R}_1[X]$ suivant

$$G = \{aX + b \in \mathbb{R}_1[X]; a \neq 0\}$$

Pour tous P = aX + b et Q = cX + d, éléments de G, on note

$$P \star Q = acX + (ad + b)$$

1. Montrer que \star est une LCI sur G.

1 points

2. Montrer que (G, \star) est un groupe.

2.5 points

3. (G, \star) est-il commutatif?

1 points

4. L'objectif de cette question est de construire un sous-groupe commutatif de (G, \star) . On fixe $k \in \mathbb{R}$ et on définit

$$A_k = \{aX + k(a-1) \in G\}.$$

Montrer que A_k est un sous-groupe commutatif de (G, \star) .

1 points

Solution

1. $P \star G$ est évidemment un opération interne de $\mathbb{R}_1[X]$.

La loi est **interne sur G** car si $a \neq 0$ et $c \neq 0$, alors $ac \neq 0$ donc $(aX + b) \star (cX + d) \in G$

2. Associativité...

$$(aX + b) \star ((cX + d) \star (eX + f)) = (aX + b) \star (ceX + (cf + d)) = aceX + a(cf + d) + b$$

= $aceX + acf + ad + b$
 $((aX + b) \star (cX + d)) \star (eX + f) = (acX + ad + b) \star (eX + f) = aceX + acf + ad + b$
= $aceX + acf + ad + b$

Donc la loi est associative.

Neutre
$$(aX + b) \star (cX + d) = aX + b \Leftrightarrow acX + ad + b = aX + b \Leftrightarrow c = 1$$
 et $d = 0$

Le neutre semble être X. A droite c'est le cas par l'équivalence précédente.

On vérifie à gauche:
$$(X) \star (cX + d) = cX + 1d + 0 = cX + d$$

Donc *X* est le neutre.

Recherche du symétrique:

$$(aX + b) \star (cX + d) = X \Leftrightarrow ac = 1 \text{ et } ad + b = 0 \Leftrightarrow c = \frac{1}{a} \text{ et } d = -\frac{b}{a}$$

On vérifie que
$$\left(\frac{1}{a}X - \frac{b}{a}\right) \star (aX + b) = \frac{1}{a}aX + \frac{1}{a}b - \frac{b}{a} = X$$

donc
$$\frac{1}{a}X - \frac{b}{a}$$
 est le symétrique de $aX + b$

G est donc un groupe.

3. On a $(2X+1) \star (X+2) = 2X+5$ et $(X+2) \star (2X+1) = 2X+3$

donc le groupe n'est pas commutatif.

4. Soit x = aX + k(a-1) et y = bX + k(b-1)

$$\begin{split} x \star y^{-1} &= (aX + k(a-1)) \star \left(\frac{1}{b}X - \frac{k(b-1)}{b}\right) = \frac{a}{b}X - \frac{ak(b-1)}{b} + k(a-1) \\ &= \frac{a}{b}X + \frac{-ak(b-1) + kb(a-1)}{b} = \frac{a}{b}X + \frac{-akb + ak + kba - kb}{b} = \frac{a}{b}X + \frac{k(a-b)}{b} \\ &= \frac{a}{b}X + k\left(\frac{a}{b} - 1\right) \in A_k \end{split}$$

Donc A_k est un sous-groupe de H

Exercice 4 (7 points)

1. Déterminer, selon la valeur du paramètre $m \in \mathbb{R}$ et en utilisant le pivot de Gauss, l'ensemble des solutions du système:

$$\begin{cases} x + y + mz = 1 \\ 3x + y - z = 1 \\ x - 2y + 2z = m \end{cases}$$

2. En déduire de la résolution précédente le rang de la matrice:

$$\begin{pmatrix} 1 & 1 & m \\ 3 & 1 & -1 \\ 1 & -2 & 2 \end{pmatrix}$$

Solution

Notons (\mathcal{S}) le système.

On procède par pivot de gauss sur x, puis y.

Alors
$$\begin{cases} x + y + mz = 1 \\ -2y + -z(1+3m) = -2 & L_2 \leftarrow L_2 - 3L_1 \\ -3y + (2-m)z = m-1 & L_3 \leftarrow L_3 - L_1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + y + mz = 1 \\ -2y + -z(1+3m) = -2 \\ z(3(1+3m)+2(2-m)) = 6+2(m-1) & L_2 \leftarrow -3L_2 + 2L_3 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + y + mz = 1 \\ -2y + -z(1+3m) = -2 \\ z(3+9m+4-2m) = 2(m+2) & L_2 \leftarrow -3L_2 + 2L_3 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + y + mz = 1 \\ -2y + -z(1+3m) = -2 \\ 7z(m+1) = 2(m+2) & L_2 \leftarrow -3L_2 + 2L_3 \end{cases}$$
On peut alors discuter suivant les valeurs de m :

• Si $m+1 \neq 0$, c'est-à-dire si $m \neq -1$, le système n'admet pas de solutions car équivalent à 0=4 (3ème équation)

• Sinon, on a
$$z = \frac{2(m+2)}{7(m+1)}$$
 puis $y = 1 - x - mz = \frac{5 - 3m^2}{7(m+1)}$

L'ensemble des solutions est alors $\left\{ \left(\frac{m+7}{2}, \frac{5-3m^2}{7(m+1)}, \frac{2(m+2)}{7(m+1)} \right) \right\}$.

Autre méthode:

On procède par pivot de gauss sur y, puis z.

$$(\mathcal{S}) \Longleftrightarrow \begin{cases} x + y + mz = 1\\ 2x - (m+1)z = 0 & L_2 \leftarrow L_2 - L_1\\ 3x + 2(m+1)z = m+2 & L_3 \leftarrow L_3 + 2L_1 \end{cases}$$

$$\iff \begin{cases} y + mz + x = 1 \\ -(m+1)z + 2x = 0 \\ 7x = m+2 \quad L_3 \leftarrow 2L_2 + L_3 \end{cases}$$

$$\iff \begin{cases} y + mz + x = 1 \\ (m+1)z = \frac{2(m+2)}{7} \\ x = \frac{m+2}{7} \end{cases}$$

On peut alors discuter suivant les valeurs de m:

- Si $m+1 \neq 0$, c'est-à-dire si $m \neq -1$, le système n'admet pas de solutions car équivalent à $0 = \frac{1}{7}$ (2ème équation)
- Sinon, on a $x = \frac{m+2}{7}$ et $z = \frac{2(m+2)}{7(m+1)}$ puis $y = -\frac{2(m+2)(1+3m)}{14(m+1)} + 1 = \frac{-6m^2 + 10}{14(m+1)} = \frac{5-3m^2}{7(m+1)}$ et $x = 1 m\frac{2(m+2)}{7(m+1)} + \frac{3m^2 5}{7(m+1)} = \frac{m+7}{2}$

L'ensemble des solutions est alors $\left\{ \left(\frac{m+7}{2}, \frac{5-3m^2}{7(m+1)}, \frac{2(m+2)}{7(m+1)} \right) \right\}$.

Exercice 5 [3.5 points]

Pour tout $a \in \mathbb{R}$ on définit le système

$$\begin{cases} ax + (1-a)y + (1-a)z = a^2 \\ ax + (1+a)y + (1+a)z = a-a^2 \\ x + y + 2z = 1-a \end{cases}$$

1. Déterminer en fonction de *a* les solutions du système.

3 points

2. Pour quelles valeurs de *a* le sytème est-il de Cramer?

0.5 points

Solution

Notons (*S*) ce système, et appliquons la méthode du pivot de Gauss en choisissant la troisième ligne comme pivot:

(S)
$$\iff \begin{cases} x + y + 2z = 1-a & L_3 \\ y + (1-a)z = 0 & L_2 - aL_3 \\ (1-2a)y + (1-3a)z = 2a^2 - a & L_1 - aL_3 \end{cases}$$

$$\iff \begin{cases} x + y + 2z = 1-a \\ y + (1-a)z = 0 \end{cases}$$

$$[(1-3a) - (1-2a)(1-a)]z = 2a^2 - a & L_3 - (1-2a)L_2 \end{cases}$$

$$\iff \begin{cases} x + y + 2z = 1-a \\ y + (1-a)z = 0 \\ -2a^2z = 2a^2 - a \end{cases}$$

On distingue alors plusieurs cas.

Si
$$a \neq 0$$
, on obtient \iff
$$\begin{cases} x = \frac{3}{2} - \frac{1}{2a} \\ y = \frac{3}{2} - \frac{1}{2a} - a \text{ donc } S = \left\{ \left(\frac{3}{2} - \frac{1}{2a}; \frac{3}{2} - \frac{1}{2a} - a; -1 + \frac{1}{2a} \right) \right\} \\ z = -1 + \frac{1}{2a} \end{cases}$$

Donc le système est de Cramer.

Si a = 0, le système est équivalent à

$$\begin{cases} x + y + 2z = 1 \\ y + z = 0 \end{cases}$$

et donc l'ensemble des solutions est $\{(1 + y, y, -y); y \in \mathbb{R}\}$

Remarque:

On peut également simplifier le système en effectuant la somme et la différence des deux premières lignes:

$$\begin{cases} ax + (1-a)y + (1-a)z = a^{2} \\ ax + (1+a)y + (1+a)z = a-a^{2} \\ x + y + 2z = 1-a \end{cases}$$

$$\begin{cases} 2ax + 2y + 2z = a & L_{1} \rightarrow L_{1} + L_{2} \\ x + y + 2z = 1-a \\ 2ay + 2az = a-2a^{2} & L_{2} \rightarrow L_{2} - L_{1} \end{cases}$$

Donc le système est de Cramer.

Si a = 0, le système est équivalent à

$$\begin{cases} x + y + 2z = 1 \\ y + z = 0 \end{cases}$$

et donc l'ensemble des solutions est $\{(1+y, y, -y); y \in \mathbb{R}\}$. Sinon,

$$\begin{cases} ax + y + z &= \frac{a}{2} & L_1 \to L_1/2 \\ y + z &= \frac{1}{2} - a & L_2 \to L_2 - L_1 \\ x + y + 2z &= 1 - a \end{cases}$$

$$\begin{cases} y + z &= \frac{1}{2} - a & L_1 \to L_3 \\ + z &= \frac{1}{2} & L_2 \to L_3 - L_2 \\ ax &= \frac{3a - 1}{2} & L_3 \to L_1 - L_2 \end{cases}$$

$$\begin{cases} x &= \frac{3}{2} - \frac{1}{2a} \\ z &= -1 + \frac{1}{2a} \\ y &= \frac{3}{2} - \frac{1}{2a} - a \end{cases}$$