

Cycle préparatoire 1ère année

Devoir surveillé 4

M. Bahtiti, K. Guezguez, A. Hajej, B. Laquerriere, J.-M. Masereel

Matière : Algèbre	Date: Jeudi 11 mars 2021
Appareils électroniques et documents interdits	Durée : 1 heures 30 minutes
	Nombre de pages : 2

Il sera tenu compte de la qualité de la rédaction et de la précision des justifications.

Le sujet comporte cinq exercices. L'ordre dans lequel ceux-ci sont traités n'est pas imposé.

 $\Diamond \Diamond \Diamond$

Exercice 1 (Groupes: 3 points).

- 1. Montrer que (\mathbb{U}, \times) est groupe.
- 2. $A = (\{2k \mid k \in \mathbb{Z}\}, +) \text{ et } B = (\{2k+1 \mid k \in \mathbb{Z}\}, +) \text{ sont-ils des sous-groupes de } (\mathbb{Z}, +) ?$
- 3. $C = (\{a\sqrt{2} + b\pi / a, b \in \mathbb{Z}\}, +)$ est-il un sous-groupe de $(\mathbb{R}, +)$?
- 4. Soit \mathbb{R}^2 muni de la loi \star définie par :

$$(a,b)\star(a',b')=(a-2a',b+3b')$$

 (\mathbb{R}^2,\star) est-il un groupe?

Exercice 2 (Groupes et Morphismes : 4 points). Soit (G, T) et (G', \star) deux groupes, et soit f un morphisme de groupes de (G, T) dans (G', \star) .

- 1. Si e est l'élément neutre de (G, T) et e' est l'élément neutre de (G', \star) , montrer que f(e) = e'.
- 2. Montrer que pour tout x de G, $f(x)^{-1} = f(x^{-1})$.
- 3. Soit H un sous-groupe de G. Montrer que f(H) est un sous-groupe de G'.
- 4. Montrer que Ker(f) est un sous-groupe de(G, T)

Exercice 3 (Groupes et Morphismes : 3 points).

Soit \star la loi de composition interne définie sur $\mathbb R$ par :

$$\forall (x, y) \in \mathbb{R}^2, x \star y = (x^3 + y^3)^{\frac{1}{3}}$$

- 1. Montrer que (\mathbb{R}, \star) est un groupe commutatif.
- 2. Montrer que $f:(\mathbb{R},+)\to(\mathbb{R},\star)$ définie par $f(x)=x^{\frac{1}{3}}$ est un isomorphisme de groupes.

Exercice 4 (Groupes et Morphismes: 11 points).

Partie A: Soit α un nombre complexe non nul vérifiant $\alpha^2 = \alpha - 1$ (on ne demande pas de calculer α).

1.

- (a) Montrer que $\alpha^3 = -1$.
- (b) Soit $k \in \mathbb{N}$. Calculer, α^{3k} , α^{3k+1} et α^{3k+2} en fonction de α .
- (c) En déduire α^n pour tout $n \in \mathbb{N}$.
- (d) Soit $p \in \mathbb{Z}$, déterminer α^p en fonction de α (et de p).

2.

- (a) Montrer que $H = \{n \in \mathbb{Z} / \alpha^n = 1\}$ est un sous groupe de $(\mathbb{Z}; +)$.
- (b) Montrer que $H = 6\mathbb{Z} = \{6z / z \in \mathbb{Z}\}.$
- 3. Déterminer le plus petit sous-groupe G, de \mathbb{C}^* , contenant α .

Partie B: Soit $\beta \in \mathbb{C}^*$, on note φ_{β} l'application :

$$\varphi_{\beta}: \left\{ \begin{array}{ccc} \mathbb{Z} & \longrightarrow & \mathbb{C}^* \\ n & \longmapsto & \beta^n \end{array} \right.$$

- 1. Montrer que pour tout $\beta \in \mathbb{C}^*$, φ_{β} est une morphisme de groupe.
- 2. Soit α le nombre complexe défini dans la partie A.
 - (a) Montrer que $\operatorname{Ker} \varphi_{\alpha} = H$.
 - (b) Montrer que Im $\varphi_{\alpha} = G$.
 - (c) L'application φ_{α} est-elle injective? surjective?
- 3. À quelle(s) condition(s) sur β , l'application φ_{β} est injective?

Exercice 5 (Systèmes linéaires : 3 points).

Ayant à résoudre le système linéaire suivant :

$$\begin{cases} 2x + 7y + z &= 1 & (E_1) \\ 2x + 3y - 5z &= 4 & (E_2) \\ -4x + 3y + z &= 5 & (E_3) \end{cases}$$

un étudiant démarre ainsi:

j'élimine
$$x$$
 en retranchant (E_2) de (E_1) : $4y + 6z = -3$ j'élimine y en retranchant (E_3) de (E_2) : $6x - 6z = -1$ j'élimine z en retranchant (E_1) de (E_3) : $-6x - 4y = 4$

- 1. Le système ainsi obtenu est-il équivalent au système initial?
- 2. Résoudre le système initial par la méthode de Gauss.