TD3 + Analyse dimensionnelle

Exercise 1 1 [F] = [q][
$$\nu$$
][β] $\rightarrow [\beta] - \frac{M^{2}\nu^{-2}}{I \nu \nu \nu^{-1}} = M T^{-2} I^{-1}$

étude d'un solenoide -> champo masgnétique B bel que

$$B = \mu_0 \left(\frac{N}{\ell} \right) I$$

analyse dimensionalle.

$$\begin{bmatrix} I \end{bmatrix} = I$$

$$\begin{bmatrix} \rho_0 \end{bmatrix} = \begin{bmatrix} \rho_0 \end{bmatrix} = \begin{bmatrix} \rho_0 \end{bmatrix} = \begin{bmatrix} \rho_0 \end{bmatrix} = \begin{bmatrix} \rho_0 \end{bmatrix} \begin{bmatrix} \rho_0 \end{bmatrix} = \begin{bmatrix} \rho_0 \end{bmatrix} = \begin{bmatrix} \rho_0 \end{bmatrix} = \begin{bmatrix} \rho_0 \end{bmatrix} \begin{bmatrix} \rho_0 \end{bmatrix} = \begin{bmatrix} \rho_0 \end{bmatrix} \begin{bmatrix} \rho_0 \end{bmatrix} = \begin{bmatrix} \rho_0 \end{bmatrix} = \begin{bmatrix} \rho_0 \end{bmatrix} \begin{bmatrix} \rho_0 \end{bmatrix} = \begin{bmatrix}$$

$$\mu_{o}$$
 en $(kg \cdot m \cdot s^{-2}) \cdot A^{-2}$: unité 5.7

$$[q][N] = (IT) (LT^{-1}) - IL$$

donc on just away
$$evune: [\mu_0] = [IL][B][I]^2 = [B]L[I]^3$$

$$= [B]L$$

$$[L]$$

3/ Dimension et unité S.I de h (constante de Planck):

énorgue:
$$E = h V$$

analyse dimensionnelle: $[R]$?

fréquence $V = \frac{1}{T}$: $[V] = T - 1$

$$[E] = [E_{c}] = [m c^{2}] \text{ etc...}$$

$$[E] = [E_{c}] = [\frac{1}{2} m v^{2}] = [m] [v^{2}] = M (L^{1}T^{-1})^{2} = ML^{2}T^{-2}$$

$$[R] \stackrel{?}{=} R P \Rightarrow [R] = [M L^{2}T^{-2}]$$

$$[R] = M L^{2} T^{-2} = [M L^{2}T^{-1}]$$

liste des grandeurs pertinertes
$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{longueur} & \text{onté} (\text{rad})
\end{array}$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{onté} (\text{rad})
\end{array}$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{onté} (\text{rad})
\end{array}$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{onté} (\text{rad})
\end{array}$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{onté} (\text{rad})
\end{array}$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{onté} (\text{rad})
\end{array}$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{onté} (\text{rad})
\end{array}$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{onté} (\text{rad})
\end{array}$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{onté} (\text{rad})
\end{array}$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{onté} (\text{rad})
\end{array}$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{onté} (\text{rad})
\end{array}$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{onté} (\text{rad})
\end{array}$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{onté} (\text{rad})
\end{array}$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{onté} (\text{rad})
\end{array}$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{onté} (\text{rad})
\end{array}$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{onté} (\text{rad})$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{onté} (\text{rad})$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{onté} (\text{rad})$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{onté} (\text{rad})$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{onté} (\text{rad})$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{onté} (\text{rad})$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{onté} (\text{rad})$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{onté} (\text{rad})$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{onté} (\text{rad})$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{onté} (\text{rad})$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{onté} (\text{rad})$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et } [\alpha] = 1 \text{ MAIS avec une} \\
\text{onté} (\text{rad})$$

$$\begin{array}{c}
A = \mathbb{T} & \text{et }$$

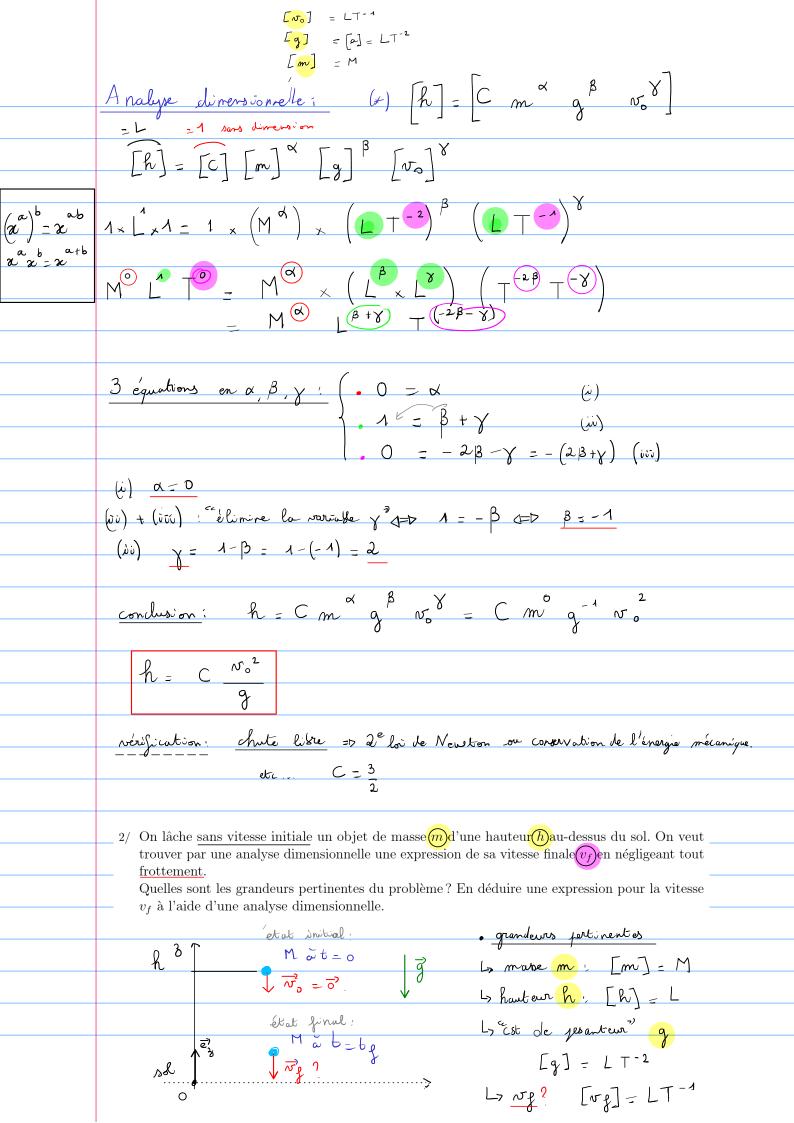
. witere initiale
$$v$$
. [v_0] = LT^{-1}
. constante g : [g] = [a] = LT^{-2} , a = $\frac{dv_{\mathcal{R}}}{dt}$
. marke m : [m] = M

Analyse dimensionale:
$$[h] = L$$
, on supose que h va s'évure pous la forme.

(*) $h = C m g^{\beta} v_{o}$

(*) $C : constante sans dimension$
 $[c] = 1$

famule possible



$$[m] = M$$
, $[g] = LT^{-2}$, $[R] = L$, $[vg] = LT^{-1}$ M°

Expression pour la viterse voj: on suppose que voj s'évoit:

avec C sans dimensionnelle

vo = C m g h

d? 3? y?

$$v = C m^{\alpha} g^{\beta} h^{\gamma}$$

$$[Ng] = [C] [m]^{\alpha} [g]^{\beta} [h]^{\gamma}$$

$$l_{g} = C m^{\alpha} g^{\beta} h^{\gamma} = C m^{\alpha} g^{1/2} h^{1/2} = C \sqrt{gh}$$

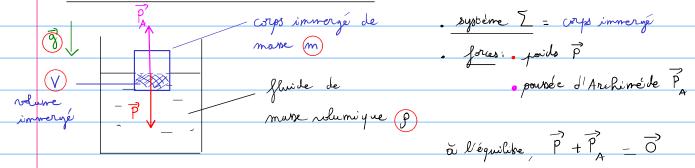
Chute like

Trouver les exposants d'une formule

Exercice 3 – Poussée d'Archimède

Trouver à l'aide d'une analyse dimensionnelle, la formule donnant la poussée d'Archimède, sachant que cette force est fonction du volume du corps immergé(V), de la masse volumique ρ du fluide et de l'accélération de la pesanteur g.

Aide : on cherchera les valeurs des exposants α , β et γ satisfaisant l'équation $P_A = C V^{\alpha} \rho^{\beta} g^{\gamma}$, Cétant une constante numérique sans dimension.



mass volumique:
$$g = \frac{dm}{dV} = \frac{m}{2}$$
 (unité: Reg. m. 3)

Son suppose que la force f_{1} et de la game: $P = C$ V^{α} P^{α} V^{α} V^{α}

Exercice 4 – Corde de guitare

On considère une corde de guitare tendue. La corde est homogène, de masse m et de longueur l, on mesure sa tension l On pince la corde et l'élongation se propage le long de la corde à la vitesse v.

- $1/\,$ Quelles sont les grandeurs per tinentes du problème.
- 2/ Déduire, à l'aide d'une analyse dimensionnelle, une expression pour la vitesse v en fonction des grandeurs pertinentes du problème.

. Vilver N en $m \cdot s^{-1}$, $[N] = L \top^{-1}$

2/ Analyse dimensionalle:
$$N = C m^{\alpha} l^{\beta} T^{\gamma}$$
 over $[C] = 1$

$$\begin{bmatrix} v \end{bmatrix} = 1 \times L \top^{-1} = \begin{bmatrix} c \end{bmatrix} \begin{bmatrix} m \end{bmatrix}^{\alpha} \begin{bmatrix} \ell \end{bmatrix}^{\beta} \begin{bmatrix} \tau^{\beta} \end{bmatrix}$$

$$\begin{bmatrix} v \end{bmatrix} = M^{\odot} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = M^{\odot} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = M^{\odot} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1$$

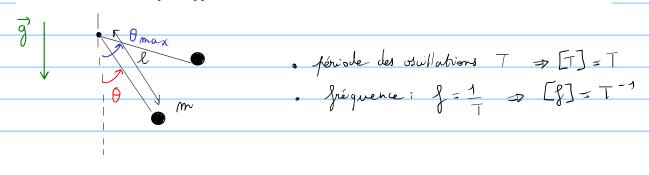
3 Equations "conflees":
$$\begin{cases} x + y = 0 & \text{(1)} \\ \beta + y = 1 & \text{(2)} \\ -2y = -1 & \text{(3)} \end{cases} \Rightarrow \begin{cases} 2 \Rightarrow \beta = 1 - y = \frac{1}{2} \\ 3 \Rightarrow y = \frac{1}{2} \end{cases}$$

$$\frac{\text{Expression pour la vitere v:}}{\text{N}^2 = \text{C m}^2 l^{\frac{\beta}{2}} - \text{C m}^{\frac{1}{2}} l^{\frac{1}{2}} - \frac{1}{2}}$$

or
$$N' = C \setminus U \setminus V$$
 avec C constante sans dimension

Exercice 5 – Pendule simple

Un pendule simple est un <u>fil sans masse</u> de longueur (l) au bout duquel est attachée une masse (m) A priori, la période des oscillations d'un tel pendule (notée (m)) peut dépendre de (m), (m) de déviation maximale par rapport à la verticale.



- 1/ Montrer par analyse dimensionnelle que T ne peut pas dépendre de m et trouver sa dépendance en fonction de l et q.
- 2/ Pourquoi ne vous demande-t-on pas la dépendance en fonction de θ_{max} ?

1/ Analyse dirensionnelle:
$$T$$
? $[g] = LT^{-2}$ $[l] = L$

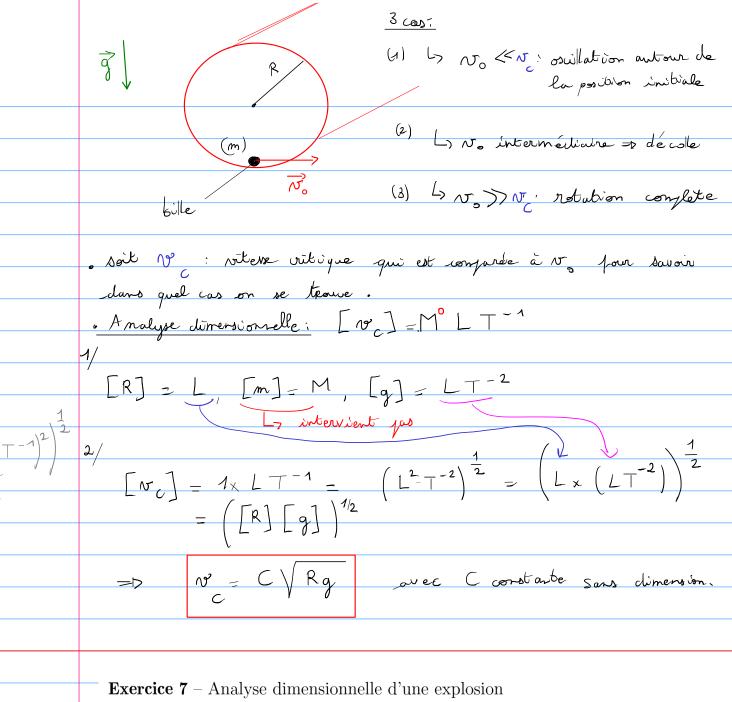
$$\beta + \gamma = 0$$

$$-2\gamma = 1$$
(2)
(3)

Exercice 6 – Trajectoires possibles

Une bille de masse mest lancée au bas d'une piste cylindrique de rayon Ravec une vitesse initiale v_0 . Si v_0 est faible la bille oscillera autour de sa position initiale (tout en bas de la piste). Pour v_0 très grande la bille fera une rotation complète. Enfin pour une valeur intermédiaire de la vitesse, elle décollera de la piste.

- 1/ Donner les dimensions de chacun des paramètres du problème (m, R ...).
- 2/ Trouver à l'aide d'une analyse dimensionnelle à quelle grandeur doit être comparée v_0 pour parler de « faible » ou « grande » vitesse (l'accélération de la pesanteur gest bien sur connue).



On raconte que c'est grâce à une simple analyse dimensionnelle que Geoffrey Ingram Taylor a pu estimer l'énergie E dégagée par l'explosion d'une bombe atomique, alors que cette information était encore classée secret-défense. Un film de l'explosion avait en effet été rendu public, permettant de connaître la taille (r) du champignon atomique après un temps t suivant l'explosion de la bombe.

- 1/ Justifier par un argument de dimension, qu'une relation entre E, r et t met nécessairement en jeu une autre grandeur dimensionnée.
 On comprend d'ailleurs facilement qu'une caractéristique du milieu dans lequel l'explosion a lieu intervient; on choisi la masse volumique de l'air ρ.
- 2/ En utilisant une analyse dimensionnelle, trouver une expression de r en fonction de t, faisant intervenir E et ρ (et une constante sans dimension).

[F] éverye dégagée par l'explosion avec
$$[E] = [E_c] = [\frac{1}{2} m v^2] = M(LT^{-1})^2$$

$$= M L^2 T^{-2}$$

$$T: taille du changignon avec $[r] = L$

$$t: temps agrès l'explosion $[t] = T$$$$$

