

Chapitre 0 – Repérage spatial

Sources: polycopié

https://www.equipes.lps.u-psud.fr/PASQUIER/enseignement/mecaS2/Mecanique_chap1_coordonnees.pdf

Se repérer dans l'espace

1.Cartésien

2. Cylindrique

3.Sphérique

Résumé

4. Applications

5.intrinsèque

6.Résumé

7. • & ∧

1. Coordonnées cartésiennes

1.Cartésien

2. Cylindrique

3.Sphérique

Résumé

dz

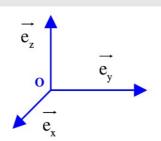
0

4. Applications

5.intrinsèque

6.Résumé

7. • & ∧



M(x, y, z) point de vecteur-position $\overrightarrow{r} = \overrightarrow{OM}$

$$\overrightarrow{OM} = x \overrightarrow{e_x} + y \overrightarrow{e_y} + z \overrightarrow{e_z}$$

Élément différentiel de position

M'(x+dx,y+dy,z+dz) point voisin de position $\overrightarrow{r}+d\overrightarrow{r}$ déplacement élémentaire \overrightarrow{dl} : $d\overrightarrow{r}=\overrightarrow{MM'}=\overrightarrow{dl}$

$$\overrightarrow{dl} = dx \overrightarrow{e}_x + dy \overrightarrow{e}_y + dz \overrightarrow{e}_z$$

ici, car vecteurs de la base constants

1. Coordonnées cartésiennes

1.Cartésien

2. Cylindrique

3.Sphérique

Résumé

4. Applications

5.intrinsèque

6.Résumé

7. • & ∧

Élément différentiel d'aire

dans le plan
$$z=0$$
 (et dans tout plan //) : $dS=dl_xdl_y=dxdy$

dans le plan
$$y=0$$
 (et dans tout plan //) : $dS=dl_xdl_z=dxdz$

dans le plan
$$x = 0$$
 (et dans tout plan //) : $dS = dl_y dl_z = dy dz$

Élément différentiel de volume

$$d\tau = dxdydz$$

2. Coordonnées cylindriques

Bien adapté pour repérer un point sur un cylindre

2.Cylindrique

1.Cartésien

3.Sphérique

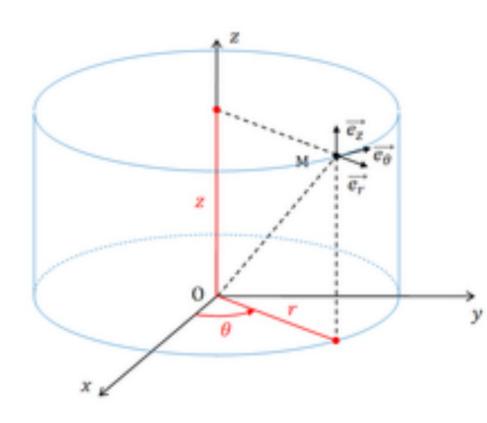
Résumé

4. Applications

5.intrinsèque

6.Résumé

7. • & ∧



2. Coordonnées cylindriques

1.Cartésien

2.Cylindrique

3.Sphérique

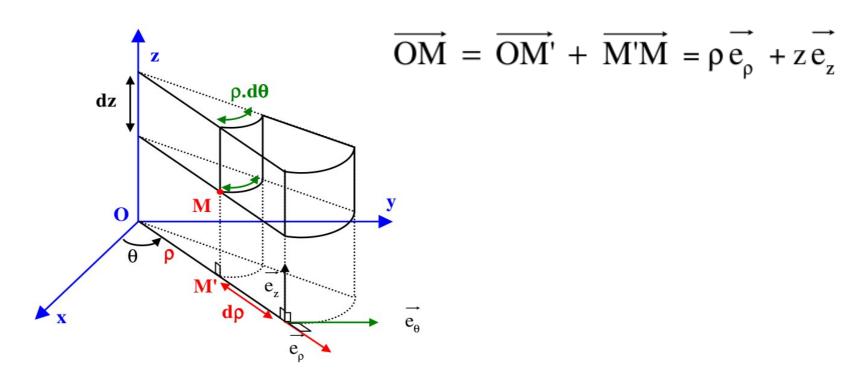
Résumé

4. Applications

5.intrinsèque

6.Résumé

7. • & ∧



Élément différentiel de position

$$\overrightarrow{dl} = d\rho \overrightarrow{e}_{\rho} + \rho d\theta \overrightarrow{e}_{\theta} + dz \overrightarrow{e}_{z}$$

2. Coordonnées cylindriques

1.Cartésien

2.Cylindrique

3.Sphérique

Résumé

4. Applications

5.intrinsèque

6.Résumé

7. ● & ∧

Élément différentiel d'aire

dans le plan
$$(\overrightarrow{e}_{\rho}, \overrightarrow{e}_{\theta})$$
: $dS = \rho d\rho d\theta$

dans le plan
$$(\overrightarrow{e}_{\rho}, \overrightarrow{e}_z)$$
: $dS = d\rho dz$

dans le plan
$$(\overrightarrow{e}_{\theta}, \overrightarrow{e}_z)$$
: $dS = \rho d\theta dz$

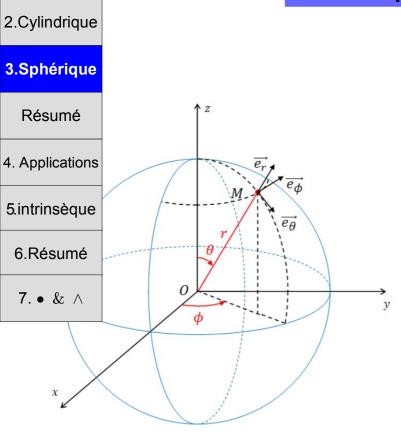
Élément différentiel de volume

$$d\tau = dl_{\rho}dl_{\theta}dl_{z} = \rho d\rho dz$$

1.Cartésien

3. Coordonnées sphériques

Bien adapté pour repérer un point sur une sphère



3. Coordonnées sphériques

1.Cartésien

2. Cylindrique

3.Sphérique

Résumé

4. Applications

5.intrinsèque

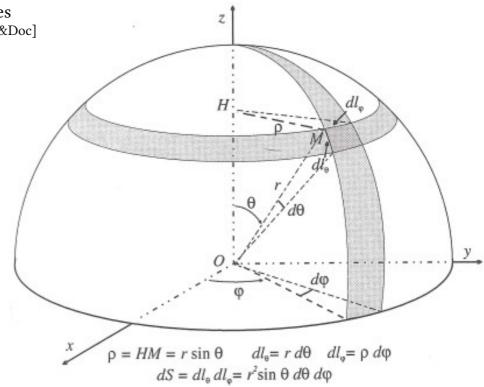
6.Résumé

7. • & ∧

<u>Figure</u> : Élément d'aire en coordonnées sphériques [*Électromagnétisme 1 – 1ère année* , H. Gié et J.P. Sarmant, Tec&Doc]

$$\overrightarrow{OM} = r. \overrightarrow{e_r}$$

Élément différentiel de position



$$\overrightarrow{dl} = dr \overrightarrow{e}_r + rd\theta \overrightarrow{e}_\theta + r\sin\theta d\varphi \overrightarrow{e}_\varphi$$

3. Coordonnées sphériques

1.Cartésien

2. Cylindrique

3.Sphérique

Résumé

4. Applications

5.intrinsèque

6.Résumé

7. • & ∧

Élément différentiel d'aire

dans le plan
$$(\overrightarrow{e}_r, \overrightarrow{e}_\theta)$$
: $dS = rdrd\theta$

dans le plan
$$(\overrightarrow{e}_r, \overrightarrow{e}_{\varphi})$$
: $dS = rdr \sin \theta d\varphi$

dans le plan
$$(\overrightarrow{e}_{\theta}, \overrightarrow{e}_{\varphi})$$
: $dS = r^2 \sin \theta d\theta d\varphi$

Élément différentiel de volume

$$d\tau = dl_r dl_\theta dl_\varphi = r^2 \sin \theta dr d\theta d\varphi$$

4. Applications

1.Cartésien

1) Volume d'une sphère pleine de centre 0 et de rayon R :

3.Sphérique

2. Cylindrique

Résumé

4. Applications

5.intrinsèque

6.Résumé

7. • & ∧

2) Surface d'une sphère pleine de centre 0 et de rayon R :

4. Applications

1.Cartésien

2.Cylindrique

3.Sphérique

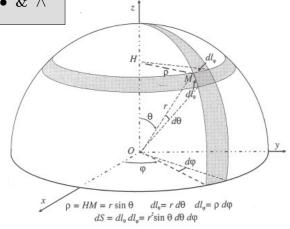
Résumé

4. Applications

5.intrinsèque

6.Résumé

7. • & ∧



3) Angle solide

Angle solide élémentaire :

Définition:

S surface (signe des faces déduit orientat° contour C). K cône découpe sur sphère (0, rayon R) une aire Σ .

Angle solide sous lequel on voit S de O:

$$\Omega = \frac{\Sigma}{R^2}$$

 R^2

$$d\Omega = \overrightarrow{dS} \cdot \frac{\overrightarrow{e}_r}{r^2}$$

en coordonnées sphériques : $d\Omega = \sin\theta d\theta d\varphi$

Angle solide : <u>sans dimension</u> et unité = *stéradian* (symbole:sr) Angle solide correspondant à l'ensemble de l'espace :

$$\Omega_0 = 4\pi$$

 $Rq: \Omega$ indépendant de R.

4. Applications

1.Cartésien

2. Cylindrique

3.Sphérique

Résumé

4. Applications

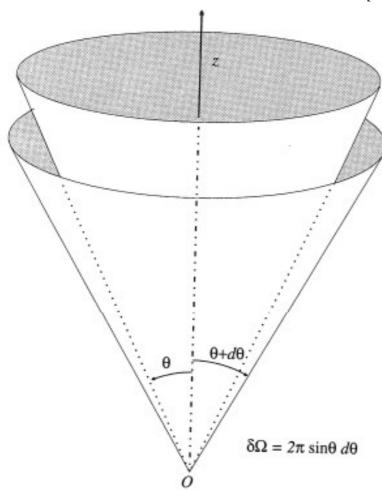
5.intrinsèque

6.Résumé

7. • & ∧

4) Angle solide d'un cône de révolution

<u>Figure</u>: Angle solide entre deux cônes de révolution. [*Électromagnétisme 1 – 1ère année*, H. Gié et J.P. Sarmant, Tec&Doc]



5. Coordonnées intrinsèques

Ce que mesure le compteur kilométrique d'une voiture...

1.Cartésien

2. Cylindrique

3.Sphérique

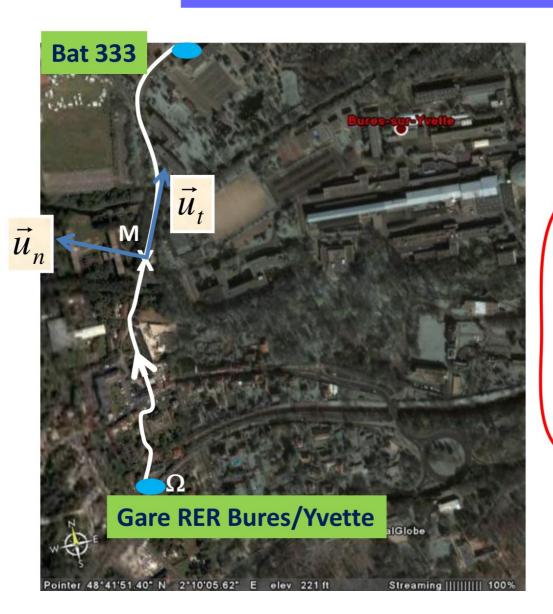
Résumé

4. Applications

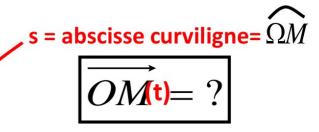
5.intrinsèque

6.Résumé

7. • & ∧



Longueur du chemin entre Ω et M :



 \vec{u}_t Vecteur tangent à la trajectoire

Vecteur normal à la trajectoire

$$\left(\vec{u}_t, \vec{u}_n\right) = +\frac{\pi}{2}$$

6. Résumé

1.Cartésien

2. Cylindrique

3.Sphérique

Résumé

4. Applications

5.intrinsèque

6.Résumé

7. • & ∧

Dans un plan:

$$\overrightarrow{OM} = x \ \overrightarrow{i} + y \ \overrightarrow{j}$$

cartésiennes

$$\overrightarrow{OM} = r \ \overrightarrow{u}_r$$

polaires

$$\vec{u}_r = \cos\theta \ \vec{i} + \sin\theta \ \vec{j}$$

$$\vec{u}_{\theta} = -\sin\theta \, \vec{i} + \cos\theta \, \vec{j}$$

Dans l'espace:

$$\overrightarrow{OM} = x \ \overrightarrow{i} + y \ \overrightarrow{j} + z \ \overrightarrow{k}$$

cartésiennes

$$\overrightarrow{OM} = r \ \overrightarrow{u}_r^{\mathsf{plan}} + z \ \overrightarrow{k}$$

cylindriques

$$\overrightarrow{OM} = r \ \overrightarrow{u}_{r}^{\text{espace}}$$

sphériques

: vecteurs non identiques

On peut aussi repérer la position d'un point par son abscisse curviligne, s (cf compteur kilométrique de voiture).

1.Cartésien

2. Cylindrique

3.Sphérique

Résumé

4. Applications

5.intrinsèque

6.Résumé

7. • & ∧

En Mécanique 1 et 2, on modélise les mouvements et leurs causes, les *forces*, par des *vecteurs*.

Afin de résoudre les problèmes de Mécanique, d'Électromagnétisme etc..., on a besoin de *projeter les vecteurs* sur des directions particulières en utilisant les produits scalaires.

En présence de rotations, on utilise également le produit vectoriel, ce qui sera un cas rencontré souvent en Électromagnétisme 1 et 2 lors qu'on s'intéressera au champ magnétique.

1.Cartésien

2. Cylindrique

3.Sphérique

Résumé

4. Applications

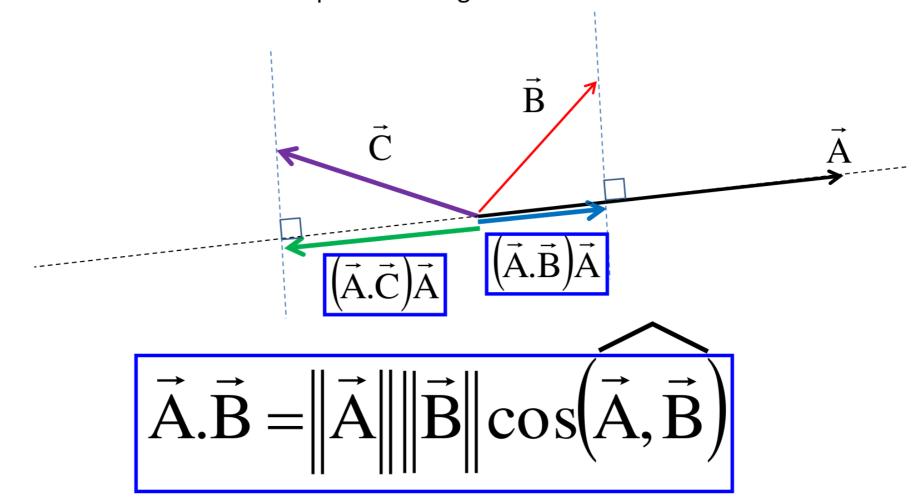
5.intrinsèque

6.Résumé

7. • & ∧

Produit scalaire de deux vecteurs $\overline{\mathbf{A}}$ et $\overline{\mathbf{B}}$.

Le produit scalaire de deux vecteurs mesure l'intensité de la projection d'un vecteur sur l'autre. C'est un nombre positif ou négatif



1.Cartésien

2. Cylindrique

3.Sphérique

Résumé

4. Applications

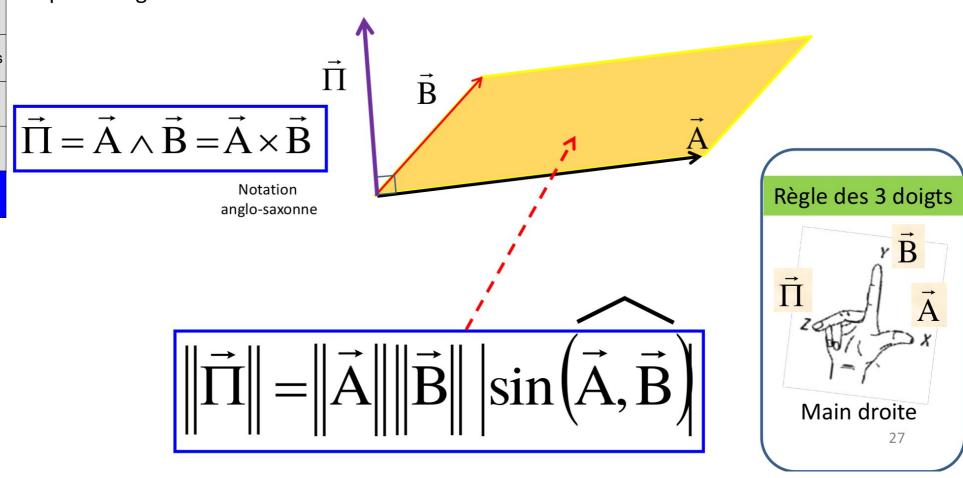
5.intrinsèque

6.Résumé

7. • & ∧

Produit vectoriel de deux vecteurs \mathbf{A} et $\overline{\mathbf{B}}$.

Le produit **vectoriel** de deux vecteurs est un **vecteur**. Il mesure la surface du parallélogramme basé sur les deux vecteurs.



1.Cartésien

2. Cylindrique

3.Sphérique

Résumé

4. Applications

5.intrinsèque

6.Résumé

7. • & ∧

Propriétés du produit scalaire et du produit vectoriel

Propriétés	Produit scalaire	Produit vectoriel
Notation	$\vec{\mathrm{A}}.\vec{\mathrm{B}}$	$\vec{\Pi} = \vec{A} \wedge \vec{B}$
Nature	Scalaire (nombre)	Vecteur
Valeur	$\vec{A}.\vec{B} = \vec{A} \vec{B} \cos(\vec{A}, \vec{B})$	$\left\ \vec{\Pi} \right\ = \left\ \vec{A} \right\ \left\ \vec{B} \right\ \left \sin \left(\vec{A}, \vec{B} \right) \right $
Commutation	$\vec{B}.\vec{A} = +\vec{A}.\vec{B}$	$\vec{B} \wedge \vec{A} = \vec{A} \wedge \vec{B}$
Associativité	$\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$	$\vec{A} \wedge (\vec{B} + \vec{C}) = \vec{A} \wedge \vec{B} + \vec{A} \wedge \vec{C}$
Produit avec lui- même	$\vec{\mathbf{A}}.\vec{\mathbf{A}} = \left\ \vec{\mathbf{A}} \right\ ^2$	$\vec{A} \wedge \vec{A} = \vec{0}$

.

1.Cartésien

2. Cylindrique

3.Sphérique

Résumé

4. Applications

5.intrinsèque

6.Résumé

7. • & ∧

Propriétés du produit scalaire et du produit vectoriel

Propriétés	Produit scalaire	Produit vectoriel
Notation	$\vec{\mathrm{A}}.\vec{\mathrm{B}}$	$\vec{\Pi} = \vec{A} \wedge \vec{B}$
Produit nul (les deux vecteurs sont non nuls)	$\vec{A} \cdot \vec{B} = 0 \text{ ssi } \vec{A} \perp \vec{B}$	$\vec{A} \wedge \vec{B} = \vec{0} \text{ ssi } \vec{A} / / \vec{B}$
'Valeur' maximale	si $\vec{A}//\vec{B}$, $\vec{A}.\vec{B} = \vec{A} \vec{B} $	si $\vec{A} \perp \vec{B}$, $\ \vec{A} \wedge \vec{B}\ = \ \vec{A}\ \ \vec{B}\ $
Valeur en fonction des coordonnées $\vec{A} = (A_x, A_y, A_z)$ $\vec{B} = (B_x, B_y, B_z)$	$\vec{\mathbf{A}}.\vec{\mathbf{B}} = A_x B_x + A_y B_y + A_z B_z$	$\vec{\mathbf{A}} \wedge \vec{\mathbf{B}} = \begin{pmatrix} A_y B_z - A_z B_y \\ A_z B_x - A_x B_z \\ A_x B_y - A_y B_x \end{pmatrix}$

1.Cartésien

2. Cylindrique

3.Sphérique

Résumé

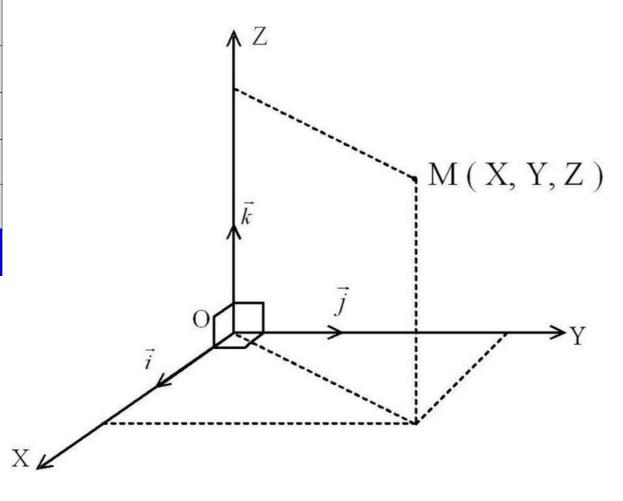
4. Applications

5.intrinsèque

6.Résumé

7. • & ∧

Produit vectoriel : en coordonnées cartésiennes



$$\vec{k} = \vec{i} \wedge \vec{j}$$

$$\vec{i} = \vec{j} \wedge \vec{k}$$

$$\vec{j} = \vec{k} \wedge \vec{i}$$

1.Cartésien

2.Cylindrique

3.Sphérique

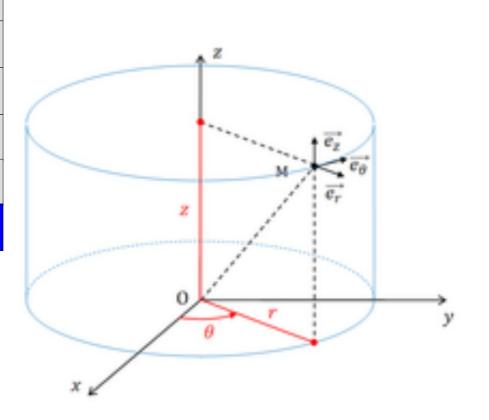
Résumé

4. Applications

5.intrinsèque

6.Résumé

7. • & ∧



$$\vec{u}_r = \cos\theta \, \vec{i} + \sin\theta \, \vec{j}$$

$$\vec{u}_{\theta} = -\sin\theta \, \vec{i} + \cos\theta \, \vec{j}$$

$$\vec{\mathbf{k}} = \vec{\mathbf{u}}_r \wedge \vec{\mathbf{u}}_\theta$$

$$\vec{\mathbf{u}}_{\mathbf{r}} = \vec{\mathbf{u}}_{\theta} \wedge \vec{\mathbf{k}}$$

$$\vec{\mathbf{u}}_{\theta} = \vec{\mathbf{k}} \wedge \vec{\mathbf{u}}_{r}$$

